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ABSTRACT:
To investigate the perception of gender from children’s voices, adult listeners were presented with /hVd/ syllables,

in isolation and in sentence context, produced by children between 5 and 18 years. Half the listeners were informed

of the age of the talker during trials, while the other half were not. Correct gender identifications increased with

talker age; however, performance was above chance even for age groups where the cues most often associated with

gender differentiation (i.e., average fundamental frequency and formant frequencies) were not consistently different

between boys and girls. The results of acoustic models suggest that cues were used in an age-dependent manner,

whether listeners were explicitly told the age of the talker or not. Overall, results are consistent with the hypothesis

that talker age and gender are estimated jointly in the process of speech perception. Furthermore, results show that

the gender of individual talkers can be identified accurately well before reliable anatomical differences arise in the

vocal tracts of females and males. In general, results support the notion that the transmission of gender information

from voice depends substantially on gender-dependent patterns of articulation, rather than following deterministi-

cally from anatomical differences between male and female talkers. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Listeners can identify the gender of adult talkers with a

high degree of accuracy. There is general agreement that

this accuracy is driven by differences in the mean funda-

mental frequency (fo, related to the length and mass of the

vocal folds) and mean formant frequencies (related to the

length of the vocal tract) produced by adult male and female

talkers (Bachorowski and Owren, 1999; Hillenbrand and

Clark, 2009). However, the anatomical variation that is

largely responsible for the acoustic differences between

adult men and women does not reliably emerge until after

puberty (Story et al., 2018; Vorperian et al., 2009). Despite

this, talker gender can be identified from the speech of pre-

pubescent children at a greater-than-chance level. For exam-

ple, Weinberg and Bennett (1971) report accuracy rates

around 75% for spontaneous speech samples from 5 to

6 year old children, and Amir et al. (2012) found sex recog-

nition rates averaging around 82% for isolated vowels and

sentences produced by children between 8 and 18 years.

Perry et al. (2001) presented adult listeners with CVC sylla-

bles produced by children aged 4, 8, 12, and 16 years and

found perceptual differentiation at better than chance levels

of male and female voices as young as four years of age.

The study described next is an investigation into the

acoustic basis of gender perception from children’s voices,

with two primary goals. First, we wish to investigate the

accuracy of gender identification from children’s voices,

and the way that this varies as a function of children’s age

and listening context. Second, we wish to explore the acous-

tic basis of listener’s gender judgments, and especially the

way that this may vary as a function of the age of the talker,

and knowledge of the age of the talker.

A. Sex and gender in the voices of children

The perception of gender in children’s voices presents

an opportunity to untangle the anatomical and performative

aspects of gender in the human voice. We may distinguish

between sex, referring primarily to biological/anatomical

characteristics, and gender, a set of practices that individu-

als engage in to maintain divisions between social catego-

ries such as “male” and “female” (Munson and Babel,

2019, p. 501). Zimman (2018) presents two general views

of gender differences in voice: the essentialist view and the

constructivist view. The essentialist view suggests that dif-

ferences between male and female voices follow necessar-

ily from anatomical differences between males and

females. In this view “Biological sex is frequently the first-

line explanation for any difference between women’s and

men’s voices […] The concepts of sex and gender are often

not distinguished, and typically, only two gender categories

are recognized despite the fact that human sexual variation

encompasses both bodies and identities that fall outside that

binary” (Zimman, 2018, p. 3). In contrast, the constructivist

view sees gender as a social practice, interpreting

“differences between women, men, or any other gender

group as socially learned rather than anatomically deter-

mined, at least in the absence of strong evidence to the con-

trary” (Zimman, 2018, p. 3).a)Electronic mail: sbarreda@ucdavis.edu
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The vocal tract morphology of boys and girls does not

begin to differ reliably until puberty, between approximately

12–14 years of age (Vorperian et al., 2011; Fitch and Giedd,

1999). It follows that, from a strict essentialist perspective,

talker gender should not be readily identifiable from speech

until after puberty. Despite the absence of reliable anatomi-

cal differences between boys and girls before puberty, sev-

eral studies have found consistent acoustic differences, since

at least as far back as Sachs et al. (1973). For example, Lee

et al. (1999) and Perry et al. (2001) reported significantly

lower formant frequencies in boys compared to girls for

vowels in /hVd/ syllables. Perry et al. (2001) showed that

adult listeners distinguish boys from girls as young as four

years of age from these recordings, and argued that such

judgments are based on differences in average formant fre-

quencies. Fitch and Geidd (1999) note, “We found no evi-

dence for appreciable sex differences in children, suggesting

that the clearly discriminable differences in girls’ and boys’

voices […] are primarily due to behavioral, not anatomical,

differences” (p. 1515). In other words, the gender of young

talkers can be identified when these talkers transmit infor-

mation about their gender identity through their speech ges-

tures, independently of the average physical differences in

the vocal tracts of male and female talkers.

More recently, studies have shown that young children

are sensitive to gendered voice characteristics, and can

modify their speech to be perceived as more masculine or

more feminine (Cartei et al., 2019a; Cartei et al., 2019b).

When instructed to impersonate stereotypically male or

female child characters, children can alter their voices to

modulate the degree to which they are perceived as male or

female, and they do this by raising or lowering their aver-

age fundamental frequency and formant pattern. These

studies indicate that children form gender stereotypes well

before the emergence of reliable differences in vocal tract

anatomy and that they have the ability to change the gen-

dered properties of their own speech to sound more mascu-

line or feminine.

Cartei and Reby (2013) used a speech analysis/resyn-

thesis method to modify the spectrum envelope of the

speech from four 8-year old children (two males and two

females). By systematically shifting the spectrum envelope

along the frequency scale, they created several continua and

asked adult listeners to label the voices as male or female or

judge the masculinity/femininity of the voice using a rating

scale. The spectrum envelope shifts employed in the stimu-

lus design affect the spacing of formants in each vowel

sound, which results in the impression of vocal-tract length

variation across the continua. Results show that the proba-

bility that listeners report a male (or masculine) voice varied

along each continuum in relation to the vocal-tract length

implied by the acoustics of the stimulus token. Although the

experiments did not explore the use of fo, phoneme-specific

variation, or the role of age in gender perception, the results

establish that acoustic cues related to vocal-tract length are

used by listeners when determining gender in the voices of

children.

B. The role of age information in identifying the
gender of children from voice

In a recent paper (Barreda and Assmann, 2018), we

reported that adult listeners can provide reasonably accurate

estimates of talker age (within 61.8 years, on average) from

isolated syllables spoken by children. In that experiment, one

group of listeners was provided with information about talker

gender while the other was not. Results suggested that both

sets of listeners used acoustic cues in a gender-dependent

manner, regardless of whether they were provided with infor-

mation about talker gender. In cases where talker gender was

not explicitly provided, listeners appeared to ‘guess’ the gen-

der of the talker and adjust their use of acoustic cues. This

behavior may be in response to the ambiguity arising from

overlap in the speech acoustics of older female and younger

male voices. This ambiguity can potentially be resolved by

attending to age information when determining talker gender

from speech. For example, the probability of observing a

male talker with an fo of 200 Hz is substantially higher for

11-year-old talkers relative to 18-year-old talkers.

C. Identification in syllables and sentences

Although talker gender can be accurately identified from

isolated vowels, fricatives, and syllables produced by adults

(Ingemann, 1968; Lass et al., 1976; Schwartz, 1968; Smith,

2016), gender information in adult voices is more robust in

longer stretches of speech. For example, Hillenbrand and

Clark (2009) found that scaling fo and formant frequencies to

simulate a talker of the opposite sex was more likely to

induce changes in perceived gender for isolated syllables

than for full sentences. Amir et al. (2012) report that the gen-

der of children is also identified more accurately for senten-

ces as opposed to syllables, although their results suggested

that this effect may be more pronounced for male children.

The improved performance for sentences over syllables

may simply be because sentences provide a better opportu-

nity to estimate the acoustic parameters relevant for gender

perception. Alternatively, sentences may better convey pro-

sodic information (e.g., speech rhythm, fo contour) that can

potentially be useful to listeners in gender identification

(Clopper and Smiljanic, 2011). Finally, there is the possibil-

ity that sentences could help gender identification from the

speech of children indirectly, by suggesting a younger or

older talker. For example, spectral and temporal variability

in production (Gerosa et al., 2007; Lee et al., 1999), and

coarticulatory variability (Khwaileh, 2011) can decrease as

a function of talker age. Since producing a sentence involves

substantially more gestural planning and coordination than a

single syllable, sentences may better convey talker maturity

(and therefore age) to listeners.

II. METHODS

A. Listeners

Forty undergraduate students (31 females, 9 males) at

the University of Texas at Dallas participated in the
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experiment. All were native talkers of American English

with normal hearing as determined by pure-tone screening

at 500, 1000, 2000, and 4000 Hz. They were compensated

with experimental research credits for their participation and

provided written informed consent prior to the listening test.

B. Stimuli

The stimuli were taken from a children’s speech data-

base (Assmann et al., 2008). For the syllable context, 140

talkers (five boys and five girls at each age level between 5

and 18 years) each contributed three syllables: /hid/

(“heed”), /hAd/ (“hod”) and /hud/ (“who would”). For the

sentence context, the number of stimuli was reduced to pre-

serve the overall time allotted to complete the experiment.

A subset of three of the five talkers produced the three sylla-

bles in a carrier sentence (“Please say the word _____

again.”). As a result, listeners in the syllable context heard

420 stimuli (5 talkers � 14 ages � 2 sexes � 3 vowels);

those in the sentence context heard 252 stimuli (3 talkers

� 14 ages � 2 sexes � 3 vowels).

C. Procedure

Half of the listeners (20) were assigned to listen to stim-

uli composed of isolated syllables; the other half listened to

stimuli composed of sentences. Within each listening con-

text, half of the participants (ten) were randomly assigned to

receive information about the age of the talker on the com-

puter screen following the presentation of each stimulus; the

other half did not. This resulted in 2� 2 between-subjects

design for listening context (sentence vs syllable), and age-

information (with and without).

Stimuli were presented monaurally in a double-walled

sound booth at a mean level of 68 dB sound pressure level

(SPL) (A-weighting), using the Tucker-Davis System 3 and

RP2.1 hardware with Sennheiser HD-598 headphones.

Stimuli were randomized along all stimulus dimensions and

presented in a different random order to each listener.

Following each stimulus, participants identified the talker as

either “male” or “female” using response buttons, then

assigned a confidence rating on a 5-point scale. The confi-

dence ratings will not be discussed here. Prior to the main

experiment listeners completed the hearing screen and a

brief questionnaire, followed by 24 familiarization trials,

using stimuli similar to those in the experiment but spoken

by different talkers. Feedback was provided for the practice

items but not for experimental trials. The experiment was

self-paced and took about 50 min, with an optional break at

midpoint.

D. Analysis

Two analyses were carried out, one investigating sensi-

tivity and bias in gender judgments, and another investigat-

ing the use of acoustic information in the determination of

talker gender. Both analyses were carried out using

Bayesian multilevel-models fit in R (R Core Team, 2019)

using the “brms” package (B€urkner, 2018).

1. Analysis of sensitivity and bias

The probability of observing a male response on a given

trial was modeled as a function of the talker’s self-identified

gender (G, “male” or “female”), whether talker-age infor-

mation was provided (I, with or without), and listening con-

text (C, syllable or sentence), with all possible interactions

included. The talker’s true age was included as a “random”

effect, and random by-age slopes were also calculated for

the full set of “fixed-effect” predictors and interactions.

Listener and talker were included as random effects, and a

random by-listener effect for gender was also included. The

formula used for the model is presented in Eq. (1),

P response ¼ ‘male’ð Þ�G � I �Cþ G � I �C jAgeð Þ
þ G j Listenerð Þ þ 1 j Talkerð Þ:

(1)

The random by-age slopes for G, I, and C (and their

interactions) in Eq. (1) allow the model to represent age-

related variation in sensitivity and bias. Age was included as

a random effect in order to estimate the large number of

involved parameters (2 � 2 � 2 � 14¼ 112 for the

G:I:C:Age interaction), while avoiding negative outcomes

that might arise from treating these as “fixed” effects.

Although the term “random effects” has several inconsistent

definitions, it is often used to refer to the estimation of

parameters using “partial pooling,” while “fixed” effects are

estimated entirely independently (Gelman, 2005). Partial-

pooling estimates take into account the values of the other
levels in a given factor, making the appearance of spurious

values less likely, and generally protecting from many of the

negative outcomes related to the estimation of large num-

bers of parameters in more traditional models (Gelman

et al., 2012).

By modeling responses of “male” and including actual

gender as a predictor, the analysis in Eq. (1) allows us to

investigate sensitivity (the ability to separate categories) and

bias (the tendency to respond to one category more than

another) across the different listening conditions. As noted

in DeCarlo (1998), the use of logistic regression to fit a

signal-detection theory model yields equivalent results to

the more traditional probit model (yielding a d’ analysis).

The logistic approach is preferred here because of the easier

interpretability of coefficients when these are expressed in

log-odds. In the parametrization presented in Eq. (1), the

gender main effect (and any term interacting with gender)

reflects sensitivity, and any coefficients that do not interact

with gender reflect bias (DeCarlo, 1998).

2. Acoustic analysis of sex judgments

The acoustic model is based on information collected

from the vowels contained by the stimuli in the syllables

condition. Formant frequencies were measured every 2 ms

using an automatic formant tracking program (Nearey et al.,
2002), and fundamental frequency was estimated with 1-ms

resolution (Kawahara et al., 2005). In each case, syllables
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were represented by median values across 20 frames cen-

tered at the vowel midpoint. All formant and fo tracks were

visually verified for correctness. Around 10% of tokens (37/

420) required manual correction of one or more formants,

which was carried out using TrackDraw (Assmann et al.,
1994).

Modeling acoustic information from whole sentences

results in several complications including the representation

of dynamic information, the aggregation of evidence across

segments, and the updating of initial inferences. To our

knowledge, none of these issues have widely accepted solu-

tions. Therefore, as a starting point, we assume that roughly

the same acoustic information is used in largely the same

manner for syllables and sentences (i.e., that estimates are

largely consistent across conditions). We expect that the

acoustic analysis for the syllable context will generally

apply to the sentence context, with the caveat that in prac-

tice dynamic acoustic information likely also plays an

important part in gender perception (discussed further in

Sec. IV E).

We are interested in three general questions: (1) What

acoustic information determines apparent talker gender in

the voices of children? (2) Does the use of acoustics vary in

an age-dependent manner? (3) Is this affected by providing

information about the age of the talker? To address these

questions, we fit the model in Eq. (2), which predicts the

probability of observing a response of “male” as a function

of the acoustic predictors in Table I (represented by the

vector X) and vowel category (V), both interacting with

talker-age information (I). All acoustic predictors were first

standardized across all talkers so that each predictor had a

mean of 0 and a standard deviation of 1 (original standard

deviations are provided in Table I).

P response ¼ ‘male’ð Þ� X þ Vð Þ � I þ X � I jAgeð Þ
þ X þ V j Listenerð Þ
þ 1 j Talkerð Þ: (2)

The model includes random by-talker intercepts, and

random by-listener slopes for each acoustic predictor (and

vowel category). The model treats age as a random effect,

includes random by-age slopes for acoustics, and allows

these to vary by age-information condition. As with the

model outlined in Sec. II D 1, including age as a random

effect results in protection from spurious effects through the

application of partial-pooling to parameter estimates.

The measures presented in Table I were chosen based

on evidence in the literature indicating their capacity to

affect listeners’ judgments of talker gender from speech.

Source-related predictors were estimated using VoiceSauce

(Shue et al., 2009), formant frequencies (F1, F2, and F3)

were estimated using the Nearey formant tracker (Nearey

et al., 2002) and fundamental frequency (fo) was estimated

using STRAIGHT (Kawahara et al., 2005). All acoustic

parameters were sampled at the midpoint of the vocalic por-

tion of the syllable. Figure 1 presents averages for male and

female talkers in each age group for selected acoustic

predictors.

Between-talker variation in average formant frequen-

cies (i.e., vocal-tract length) was operationally defined using

the logarithm of the geometric-mean formant frequency pro-

duced by a talker across all their vowel tokens (Gtalker,

Nearey, 1978; Nearey and Assmann, 2007). As noted in

Barreda (2020), when talkers are sampled from a single dia-

lect, differences in their Gtalker will primarily reflect differ-

ences in their vocal tract length.1 Vowel category was

included as a (sum-coded) factor to express information

about predictable variation in acoustic properties between

vowels, including the average F1, F2, and F3 values of

different phonemes. To minimize correlations in the data,

individual formant frequencies (F1, F2, F3) were log-

transformed and then centered within vowel-category

(Hillenbrand and Clark, 2009). These values will reflect the

position of each token relative to the mean of the phoneme-

specific distribution seen in Fig. 1(a) (within-phoneme

variation).

Using log-transformed Hertz (log-Hz) as a unit of mea-

surement means that effects will be proportional to the base-

line value of the formant. For example, an increase in 0.1

log Hz indicates an increase in Hertz values by a factor of

1.105 [exp (0.1)], approximately 10%. In contrast, an

increase in 100 Hz can suggest substantially different pro-

portional changes based on whether the underlying formant

began at 300 Hz (33% increase) or 1100 Hz (9% increase).

Thus, the use of log-Hz allows the model to code propor-

tional changes in formant frequencies (and derived

TABLE I. Acoustic predictors used in modeling sd of each acoustic predictor across all data.

Abbr. Description (source) sd (unit)

fo natural logarithm of the fundamental frequency (Hillenbrand and Clark, 2009) 0.29 (log-Hz)

CF1 category-centered log-F1 (Hillenbrand and Clark, 2009) 0.11 (log-Hz)

CF2 category-centered log-F2 (Hillenbrand and Clark, 2009) 0.16 (log-Hz)

CF3 category-centered log-F3 (Hillenbrand and Clark, 2009) 0.15 (log-Hz)

Gtalker mean of the logarithms of F1, F2 and F3 across all vowels (Assmann et al., 2008) 0.13 (log-Hz)

CPP Cepstral pitch prominence (Hillenbrand et al., 1994) 4.0 (decibels)

HNR Harmonics-to-noise ratio (de Krom, 1993) 13.0 (decibels)

H1H2c Corrected magnitude-difference between harmonics 1 and 2 (Iseli et al., 2007) 7.5 (decibels)

H1A1c Corrected magnitude-difference between harmonic 1 and F1 peak (Iseli et al., 2007) 8.3 (decibels)

H1A3c Corrected magnitude-difference between harmonic 1 and F3 peak (Iseli et al., 2007) 4.0 (decibels)

3952 J. Acoust. Soc. Am. 150 (5), November 2021 Santiago Barreda and Peter F. Assmann

https://doi.org/10.1121/10.0006785

https://doi.org/10.1121/10.0006785


measures) of the kind associated with differences in vocal-

tract length.

III. RESULTS

A. Analysis of sensitivity and response bias

Gender was identified more accurately from sentences

than syllables (84% vs 72% correct), but information about

talker age actually had a small negative effect on average

accuracy (76% with age information, 78% without age infor-

mation). Gender was identified more accurately for older

than younger talkers, particularly for teenaged compared to

prepubescent talkers (Fig. 2). In addition, listeners were gen-

erally more correct in identifying the gender of male talkers

than that of female talkers (82% vs 73% correct), reflecting a

possible bias towards identifying talkers as male.

Responses were analyzed using the model described in

Sec. II D 1. In this model, coefficients interacting with gen-

der reflect increasing sensitivity (the ability to distinguish

categories), with positive values indicating a greater separa-

bility of the categories. Coefficients not interacting with

gender represent bias (the overall tendency to select one

category over another), with positive coefficients reflecting

an increasing tendency to respond “male.” In our logistic

regression model, sensitivity measures reflect the difference

between hit and false alarm rates in log-odds, so that a

value of d represents an expected hit-rate of 1/(1þ e�d/2)

and an expected false alarm rate of 1/(1þ ed/2), in the

absence of any bias. An intercept of c reflects a shift of c
log-odds in both hits and false alarms relative to the zero-

bias case, reflecting a c log-odds increase in the overall

probability of observing a response of “male” [e.g., hit rate

¼ 1/(1 þ e�d/2þc)].

We will distinguish fixed predictors and age-varying

predictors (the age-related “random” effects). Fixed predic-

tors [Fig. 3(a)] reflect overall differences in sensitivity and

bias across listening conditions without considering age-

related variation in these parameters. Listening context and

age-information were coded with treatment coding, with iso-

lated syllables and no age-information serving as reference

levels (i.e., the intercept represents syllables with no age-

information). Results indicate that listeners may have a very

small bias towards responding male overall [Intercept

¼ 0.51, standard deviation (sd) ¼ 0.28, 95% highest density

FIG. 1. (Color online) (a) Average F1 and F2 values for each vowel (upper

left, /i/; lower left, /u/; lower right, /A/) for each age and gender group. (b)

Mean Gtalker and fo for each age and gender group. Numbers indicate age

groups, males in blue and females in red. Male values are presented in

circles.

FIG. 2. (Color online) Probability of observing a correct gender identifica-

tion, pooled across all listeners, presented by age and gender group. Each

column presents the same information (left, syllable context; right, sentence

context): the top row presents probabilities while the bottom row presents

the logit of the same values.
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interval (HDI) ¼ (�0.05,1.05)], however, there is no appar-

ent variation in response bias according to age-information

or listening context. Although listeners were quite good at

distinguishing male and female talkers in syllables [Gender

¼ 2.86, sd ¼ 0.66, 95% HDI ¼ (1.49, 4.11)], sensitivity was

nearly twice as large in the sentence context [Context:Gender

¼ 2.50, sd ¼ 0.46, 95% HDI ¼ (1.61, 3.43)]. Age informa-

tion did not improve sensitivity, and may have actually had a

small negative effect [Info:gender ¼ –0.44, sd ¼ 0.28, 95%

HDI ¼ ( –0.99, 0.12)].

To investigate the age-varying parameters, we consid-

ered the standard deviation of different groups of predictors

(Gelman, 2005), presented in Fig. 3(b). Groups of coeffi-

cients with large standard deviations vary substantially from

each other and thus have a larger effect on observed out-

comes. The age:intercept (i.e., the by-age random intercepts)

and age:context terms reflect variation in response bias

according to talker age, and variation in this according to lis-

tening context (syllables vs sentences). There does not

appear to be any age-related effect for talker-age informa-

tion. Similarly, the large values for age:gender and age:con-

text:gender indicate substantial variation in sensitivity by

age, and these also vary by listening context. Since all of the

coefficient groups involving age information have small

standard deviations, with many values near zero, explicitly

providing age information does not seem to have had a nota-

ble effect on age-dependent listener behavior. Figure 4

presents the groups of age-varying coefficients found to

have non-trivial amounts of variation. Figures 5(c) and 5(f)

present comparisons of predicted bias and sensitivity at dif-

ferent ages, across the two listening contexts.

The biases in Fig. 4(c) may at first appear to exhibit a

positive linear trend. However, apart from the negative val-

ues at five years, the bias parameters vary around zero until

about 11 years of age, after which time they are mostly posi-

tive. This suggests a growing tendency to respond “male”

for post pubescent voices (discussed further in Sec. IV D). A

similar pattern is evident in the listener sensitivities, which

are reasonably stable until they begin to increase after ages

11–12. Although there is a clear benefit to the sentence lis-

tening context and much higher sensitivity after puberty, lis-

teners were still able to identify talker gender at a higher

than chance level for children 5–8 years old based only on

isolated syllables. For example, the predicted average sensi-

tivity for ages 5–8 in the syllable context was d ¼ 1.04 [sd

¼ 0.41, 95% HDI ¼ (0.25, 1.84)], which indicates an

expected accuracy of 63% [95% HDI ¼ (53%, 71%)] even

for these very young children.

FIG. 3. (Color online) (a) Posterior distributions of estimates of the fixed

(marginal) effects of different predictors. (b) Posterior distributions of esti-

mates of variance components related to age-related variation. Points indi-

cate means, bars indicate 95% highest-density intervals.

FIG. 4. (Color online) Distribution of selected age-varying predictors (i.e.,

by-age random effects). Points indicate means, bars indicate 95% highest-

density intervals. Effects in (c) and (f) represent the sum of the appropriate

fixed predictors [from Fig. 3(a)] to the age-varying terms presented in the

row immediately above.
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B. Acoustic analysis

Figure 5(a) presents the fixed parameter estimates for

each acoustic predictor, reflecting average use of each cue

across all ages. Results indicate that the strongest spectral

effect by far was for Gtalker with weaker, but consistent,

effects for centered F1 and F2 (CF1, CF2), and for vowel

category. The predictors representing individual formants

specifically capture the marginal effects of these when all
other formants are held constant. Thus, the Gtalker predictor

represents the effect of coordinated shifts to all formants

(i.e., vocal-tract length differences) that cannot be explained

by added effects of the individual formant predictors.

There was a strong effect for fo, however the remaining

source predictors had very weak effects on responses, and all

but HNR are difficult to distinguish from zero. In Fig. 5(b), we

see that age-information had very small effects on the acoustic

predictors for the most part, with a small increase in the

magnitude of Gtalker [Mean ¼ 0.34, sd ¼ 0.30, 95% HDI

¼ (–0.275, 0.936)] and a moderate increase in the values of fo

[Mean ¼ 0.80, sd¼ 0.34 95% HDI ¼ (0.084, 1.48)].

1. Age-dependent use of acoustic information

To investigate the age-dependent use of acoustics, we

considered the standard deviation of each bundle of random-

effects terms (as in Sec. III A). A large standard deviation for

a coefficient, for example the fo term in Fig. 6(a), indicates

substantial variation in the value of a parameter across ages.

As seen in Fig. 6(a), there is substantial age-related variation

in the intercept, fo, CF3, and Gtalker, and a very small amount

of variation in HNR, H1H2c, and H1A1c. Figure 6(b) presents

the variation in the age-information:acoustics interactions,

which are all near zero. This suggests there are no meaningful

differences in age-dependent use of acoustic information

across the age-information conditions. In other words, listen-

ers do use some acoustic cues in an age-dependent manner,

but having age information explicitly provided to them made

no difference to this behavior. As a result, the age-dependent

use of acoustics will be considered jointly across both age-

information conditions.

Figure 7 presents the distribution of the age-varying

acoustic predictors that showed substantial variation in

Fig. 6(a). Intercept values decrease as a function of talker

age, likely reflecting the fact that a talker with average fo

and Gtalker for this dataset would have relatively high fre-

quencies for an adult male, but low frequencies for a young

male. Thus, if we fix the acoustic properties of a voice at the

average, the probability that the talker is male will decrease

as a function of talker age. Although this behavior would

account for the pattern of responses seen in Fig. 7, it

assumes that age is known, and listeners provided responses

consistent with this age dependent behavior even in the

absence of explicit information about talker age.

The coefficients for fo and Gtalker share a similar pat-

tern, with small negative values increasing in magnitude at

approximately 12–13 years of age. Although substantially

noisier (and smaller in magnitude), the age-related patterns

for HNR and H1H2c are suggestive of the same general

FIG. 5. (Color online) (a) Values of fixed acoustic parameters. (b) Effects

are contrasted across the age-information conditions. Points indicate means,

bars indicate 95% highest-density intervals. Posterior means and credible

intervals for all parameters are available in supplemental material.

FIG. 6. Posterior distributions of estimates of the standard deviation of dif-

ferent variance components. Points indicate means, bars indicate 95%

highest-density intervals.
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trend, with coefficient magnitudes increasing at approxi-

mately 12–13 years of age. The age-related variation in CF3

features no clear pattern, with changes in sign across succes-

sive years. Since its marginal, fixed parameter estimate is

also quite noisy and close to zero, the age-dependent varia-

tion in CF3 may reflect a combination of noise and variation

in the characteristics of the talkers in our age groups. The

effect for H1A1c is not presented as its small deviations from

zero seem to reflect only noise, with no consistent trend.

IV. DISCUSSION

Our results show that listeners can distinguish males

from females at levels better than chance even for young

children, and that identification accuracy is higher for sen-

tences compared to isolated syllables. Providing listeners

with information about talker age did not have a strong

effect on listener sensitivity or bias; however, all listeners

appeared to use talker age information in their judgments of

talker gender. In this section, we will discuss the implica-

tions of these findings for the estimation of vocal-tract

length from speech acoustics, the joint estimation of speech

categories and talker indexical characteristics, and the trans-

mission of gender information from speech.

A. Vocal-tract length estimation in gender perception

As seen in Fig. 5 and Table II, within-category variation

in the formant frequencies (CF1, CF2) and phoneme-

specific variation between vowel categories can both have

weak, but consistent, effects on the perception of talker gen-

der. In both cases, lower formants are associated with the

perception of male talkers, conforming to previous reports

that vowels with lower formants tend to be associated with

larger talkers (Barreda, 2017). However, although the

effects for within-speaker variation in formant patterns are

consistent, the effect is much smaller than it might be. For

example, in our data /i/ has average F1, F2, and F3 frequen-

cies that are 86%, 180%, and 121% of the value of the aver-

age F1, F2, and F3 frequencies of /u/. Despite these large

differences in their formant patterns, there is only a 0.51

logit [sd ¼ 0.21, 95% HDI ¼ (0.11, 0.92)] difference in the

probability of a “male” identification between /i/ and /u/.

Compare this to the expected effect of a 14% change in

Gtalker, which is more than three times larger ( –1.47 logits).

Similarly, despite standard deviations of roughly equal

magnitude to that of Gtalker (see Table I), the effects for CF1

(�0.22) and CF2 (�0.44) are substantially smaller than that

of Gtalker.

Overall, our results show that listeners are more influ-

enced by the average spectral characteristics of a talker

(e.g., Gtalker) than they are by independent variation in the

absolute formant frequencies of a given token. This leads

to an apparent paradox: the best predictor of talker-gender

judgments (Gtalker) is not directly present in the signal. A

plausible interpretation for this is that listeners make

use of the absolute formant pattern to estimate a latent

talker-dependent variable (such as Gtalker), which is then

used to infer talker gender and potentially other talker

indexical characteristics (Barreda, 2020; Nearey and

Assmann, 2007; Turner et al., 2009). Here, we outline

some ways that listeners might recover this information

from individual tokens.

To estimate talker characteristics in a stable manner

despite between-phoneme variation, listeners require a

FIG. 7. Effects for each acoustic predictor as a function of age. Points indi-

cate means, bars indicate 95% highest-density intervals. Age-dependent

effects are found by adding the marginal effect for each predictor (presented

in Fig. 5) to the age-dependent effects for that predictor (e.g., fo þ Age: fo

to find age-dependent values for fo).

TABLE II. Posterior means for coefficients from the acoustic model [aver-

aged across age-information conditions, Fig. 5(a)]. The sd of posterior dis-

tributions relate to the standard error of these estimates, and the values

indicated by 2.5% and 97.5% reflect the bounds of the 95% highest-density

credible interval for the parameter.

Parameter Mean sd 2.5% 97.5%

Intercept 0.57 0.45 �0.33 1.46

fo �1.1 0.36 �1.81 �0.38

CF1 �0.22 0.1 �0.44 �0.03

CF2 �0.44 0.1 �0.64 �0.25

FC3 0.17 0.22 �0.24 0.63

/i/ �0.3 0.08 �0.46 �0.15

/A/ 0.4 0.12 0.17 0.64

/u/ �0.1 0.1 �0.3 0.09

Gtalker �1.47 0.36 �2.26 �0.84

CPP �0.02 0.07 �0.16 0.12

HNR 0.23 0.09 0.05 0.42

H1H2c 0.11 0.11 �0.1 0.33

H1A1c �0.12 0.1 �0.32 0.07

H1A3c 0.09 0.11 �0.12 0.32
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talker-dependent, phoneme-independent value (e.g., Gtalker).

However, listeners only have access to the phoneme-

dependent spectral information in a given token (e.g., the

mean of log-F1, log-F2, and log-F3 for a token (Gtoken).

Using token characteristics directly as an estimate of Gtalker

(or a similar statistic) can yield reasonable estimates, with

errors on the order of approximately 10% of values

(Johnson, 2020; Lammert and Narayanan, 2015). Estimates

of Gtalker based on single tokens that do not control for pho-

netic content may include substantial phoneme-dependent

biases in their estimates of Gtalker (Barreda and Nearey,

2018). As an example of this approach, we use Gtalker

directly to estimate Gtalker [Fig. 8(a)], resulting in a mean

absolute prediction error of 10% and estimates that have a

correlation of 0.7 with Gtalker [Fig. 8(a)]. These estimates of

Gtalker feature large biases (seen as intercept shifts) that are

entirely predictable on the basis of the vowel category used

to estimate the parameter.

Barreda (2017) outlines a simple “pattern correction”

method to estimate Gtalker more accurately in cases where

the vowel category is known.2 Dialects will have systematic,

phoneme dependent variation in Gtalker based on the pho-

neme uttered [as seen in Fig. 8(a)]. For example, the average

Gtalker across all talkers in this experiment was 1558, 1546,

and 1260 Hz for /i/, /A/, and /u/, respectively [where fre-

quency in Hz ¼ exp (Gtalker)]. The average Gtalker across all

vowels was 1447 Hz, meaning that the vowel-specific for-

mant averages are, on average, 108%, 107%, and 87% as

large as Gtalker when expressed in Hz. In fact, we can see

these tendencies reflected in the between-phoneme intercept

shifts in Fig. 8(a). Thus, if we simply multiply any given

Gtalker by the correct phoneme-specific scale adjustment, we

may recover reasonable estimates of Gtalker. This process is

analogous to adjusting the intercepts of the lines in Fig. 8(a)

based on the expected vowel-specific distance to the overall

mean intercept. This adjustment results in a mean absolute

prediction error of 4% [Fig. 8(b)], and produces estimates

that have a correlation of 0.90 with Gtalker. Thus, we see that

even this very simple adjustment can substantially reduce

prediction error when estimating average talker characteris-

tics (e.g., Gtalker) from a single token.

More complicated pattern-correction methods exist that

can accurately estimate Gtalker from single tokens even

when the vowel category is not known. For example,

Nearey and Assmann (2007) present a model (Method 6, p.

258) that uses knowledge of dialectal phoneme patterns to

estimate a different “pattern-corrected” Gtalker for each pos-

sible vowel-category (rather than only for the “known” cate-

gory). These estimates are then considered together with

information about Gtalker ranges across the human popula-

tion, and information about the covariance of Gtalker and g0,

in order to jointly estimate Gtalker and vowel-category for

each token. We created a model as described in Nearey and

Assmann using acoustic measurements of our stimuli, and

used this to classify vowel category and estimate Gtalker for

our vowel stimuli. This model was given information about

stimulus F1, F2, F3, and fo, but no direct information about

average talker information (e.g., Gtalker), or about the true

vowel category. This model was able to classify 99% (416/

420) of tokens correctly, estimated Gtalker to within a mean

absolute error of 2.8%, and produced estimates with a corre-

lation of 0.94 with the true Gtalker.

Barreda (2020) provides a conceptual framework to

consider these “pattern corrections” in perception by com-

paring Gtalker estimation and vowel recognition to size/shape

estimation in the visual domain. In vision, distance scales

the apparent size of objects up/down uniformly along all

dimensions. As a result, the size of the retinal image of an

object is a reliable cue to the distance of the object from the

observer. Objects of different sizes can appear to be the

same size when presented at different distances. As a result,

when an observer estimates the distance of an object, they

must consider both the apparent size (i.e., the retinal image)

and the known (or estimated) true size of the object

(Holway and Boring, 1941). This behavior is analogous to

the joint estimation of phonetic content and vocal-tract

FIG. 8. (Color online) Distribution of predicted and observed Gtalker for different estimation methods. Each solid line indicates the relationship between pre-

dicted and observed Gtalker for a different vowel. Dotted lines indicate perfect prediction. (a) Estimation of Gtalker directly from the formants with no vowel

correction. (b) Correcting for the known vowel category results in a substantial improvement in estimation. (c) With more sophisticated Gtalker estimation

methods (as described in the text), extremely accurate estimates can be achieved from even a single token.
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length. The vocal tract scales the formant pattern associated

with a vowel phoneme up or down, so that measures of aver-

age formant frequency (e.g., Gtalker) are reliable cues to the

size of the talker. However, since different phonemes (i.e.,

linguistic “objects”) have different inherent “sizes,” the lis-

tener must consider the properties of the object when esti-

mating the VTL-related scaling from the spectral pattern.

Essentially, an F1 of 500 Hz means substantially different

things if it is observed for /i/, as opposed to for /A/, and lis-

teners appear to behave in a manner consistent with this

knowledge.

B. Age-dependent use of acoustics

In Barreda and Assmann (2018) we suggested that lis-

teners determine the talker’s gender in order to help improve

age perception from speech. Conversely, in this study, we

find evidence of the reliance on talker-age information in

gender perception. To evaluate the importance of the age-

related variation in acoustics (Fig. 6), we investigated the

predictive accuracy of variants of the model in Eq. (2), pre-

sented in Fig. 9. These variants contain the same fixed-

effects structure, but differ in the random-effects terms

excluded or included when making predictions. Rather than

looking for the highest accuracy, we are interested in the

most accurate prediction of listener responses. The full

model [Fig. 9(a)] is able to predict perceived talker-gender

with good accuracy; however, this includes both talker- and

listener-specific adjustments to the model. Figure 9(c) indi-

cates that a model including only age-related adjustments is

still able to predict talker gender with good accuracy, and is

still a reasonable reflection of listener behaviors. In contrast,

a model that uses only the marginal effects for acoustics

[Fig. 9(d)] without considering talker age offers very inaccu-

rate prediction of listener judgements. Although the talker

and listener adjustments improve the situation somewhat

[Figs. 9(e) and 9(f)], the predictions are still substantially

different from the observed listener judgments.

Figure 9 suggests that the age-dependent use of acous-

tics may be an important aspect of the accurate gender per-

ception exhibited by listeners. As noted by Barreda and

Assmann (2018), this is likely a result of the substantial

overlap between older female and younger male talkers.

Figure 10 presents the location of each talker in this experi-

ment according to their average fo and Gtalker , presented by

age. As seen in Fig. 10, using a single boundary for all talk-

ers leads to systematic errors as a function of talker age [see

Fig. 9(d)], with a tendency to classify all younger talkers as

female and all older talkers as male. In contrast, the shifting

boundaries mode possible by the age-dependent models

have a much greater chance of yielding correct gender iden-

tifications, and better reflect the responses provided by

human listeners.

C. Joint estimation of age and gender

Recently, Barreda (2020) suggested that the perception

of vowel quality may be inherently related to the perception

of talker size (and other indexical characteristics) via their

shared dependence on the apparent spectral-scaling associ-

ated with a vowel (indexed here using Gtalker). Next, we pro-

vide a sketch of how the perception of talker age and gender

might naturally be related, though we do not make any

claims about any specific implementation.

It has long been noted that the perception of vowel

quality involves the estimation of a talker-dependent spec-

tral scaling parameter (Gtalker, or an analogous measure)

related to vocal-tract length (Nearey, 1978; Turner et al.,
2009), even if only as a by-product of speech perception.

For example, consider the distribution of average produc-

tions for each talker group presented in Fig. 1(a), presented

again in Fig. 11(a). In order to recognize a vowel, a listener

FIG. 9. (Color online) Accuracy of predictions made using models with the same fixed-effects structure, but differing in the included random-effects clusters

(indicated in each plot). Prediction of male and female voices is presented separately. Model accuracy is summarized using the category implied by the

mean posterior predicted log-odds for each token.
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must also commit to an interpretation of the talker’s vocal

tract. For example, if the listener encounters a production at

location (1) in the figure and concludes that this is an /A/,

then they must also commit to a long vocal-tract for the

talker (and a low Gtalker). On the other hand, if a listener

encounters a vowel at location (2) in the figure and also con-

cludes that it is an /A/, then they must also conclude that the

talker has a shorter vocal tract, and produces higher for-

mants overall (i.e., has a higher Gtalker).

Several indexical characteristics (e.g., age, sex, gender,

height) correlate strongly with Gtalker, and are also highly

correlated with each other. So, in addition to fixing an esti-

mate of Gtalker and approximate vocal-tract length, commit-

ting to an interpretation of a vowel in some cases may also

affect the perception of talker indexical characteristics (or

vice versa). Height correlates very strongly with vocal-tract

length across the human population (Fitch and Giedd,

1999), and the age of children is almost perfectly correlated

with their average height, especially before 15 years of

age (Fryar et al., 2012). As a result, locations 1 and 2 in

Fig. 11(a) force associations with talkers of different

heights, and potentially ages and genders, as seen in

Fig. 11(b). In addition, the Gtalker implied by locations 1 and

2 in Fig. 11(a) suggest different expectations about talker fo

[Fig. 11(c)], which typically has a strong association with

talker gender. As a result of these relationships, if a listener

gets an estimate of a talker’s vocal-tract length for “free” in

the process of vowel identification, they also get an estimate

of the talker’s approximate height and, in the case of children,

the approximate age. Although the joint consideration of

indexical characteristics and vocal-tract length may not nec-

essarily solve all ambiguous cases, it may help by narrowing

FIG. 10. (Color online) Each panel shows male (blue circles) and female (red triangles) talkers at different ages (indicated by numbers in each panel). Solid

lines indicate boundaries based on the age-dependent intercept, fo and Gtalker estimated from our acoustic model. Dotted lines indicate boundaries based on

the fixed use of the same predictors in the acoustic model. In the final panel (bottom right), all of the age-dependent boundaries are compared, with darker

colors indicating older age groups.

FIG. 11. (Color online) (a) Average F1 and F2 values for each vowel, for a

subset of age and gender groups. Numbers indicate age groups (males in

circles). (b) Average height for different age and gender groups (Fryar

et al., 2012). Error bars enclose one standard deviation. (c) Average Gtalker

and fo for different age and gender groups. Numbers indicate age groups

(males in circles). (d) Distribution of Gtalker by age and gender in our sam-

ple. Error bars enclose one sd. In each plot, red is used for females and blue

is used for males.
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down the range of possible solutions. For example, consider

location 2 in Fig. 11(c), corresponding to either 11-year-old

males or 18-year-old females. These talkers have similar fo

and Gtalker values, meaning that these gross acoustic cues can-

not be used to accurately identify their gender. As seen in

Fig. 11(b), these talkers also roughly overlap in their approxi-

mate heights. However, in Fig. 11(d) we see that these talkers

are separable along the age dimension: talkers are either

younger males or older females, but not the other way around.

As a result, anything that suggests “maturity” will help reduce

ambiguity and increase the probability that both age and gen-

der are identified correctly. More generally, cues that suggest

either “femininity” or “maturity” can potentially affect the

accurate perception of both talker age and gender when these

cues are considered together.

D. The bias towards male responses

In Sec. III A, we discussed the bias towards responding

“male” for post pubescent voices, a pattern of results which

has been reported previously (e.g., Amir et al., 2012; Lass

et al., 1976). Owren et al. (2007) suggest that the bias

towards male responses may be because “adult male voices

can be considered ‘marked’ by the sexually selected features

of lowered fo and formant frequencies,” which “virtually

guarantees that the talker is an adult male.” However, as the

authors note, “their absence does not unequivocally imply

that the talker is an adult female. The individual might, for

instance, be a young male whose voice has not yet changed,

or a post pubertal male whose vocal tract has not diverged

as far from the female form as is typically the case” (p.

931).

Figures 9 and 10 support the general interpretation of

the response bias outlined previously. The increase in male

bias corresponds approximately to the appearance of low-fo

voices in the male talkers. As seen in Fig. 11, low-fo males

are the most discriminable group, and these talkers can be

unambiguously classified independently of age information.

An increase in correct male responses for these talkers, and

less accurate (but unbiased) responses for older girls (who

are potentially confusable with younger males) would result

in an increase in the false alarm rate (older girls confused

with younger boys), without a corresponding increase in

misses (older males identified as females). Thus, the bias

towards male responses for older talkers may simply reflect

the fact that the gender of older male talkers with low fos is

generally easy to identify.

The previous result should not be taken as indicating

that the acoustic features most typically associated with

males (e.g., a low fo) are necessary to communicate male-

ness. In this experiment, we found the accurate perception

of maleness in the complete and total absence of the acous-

tic features which are traditionally thought to “mark” a

voice as male (low fo and low formants). Thus, although the

bias towards male responses may very well be because

many adult male voices are “marked” by unique features,

young boys are able to express maleness even in the absence

of these features. This suggests that the communication of

gender from speech does not necessarily rely on sexually

selected anatomical differences between men and women,

as these tend to emerge after puberty. Essentially, if the only

way to hear “maleness” in a voice was to hear a low fo and

low formants, no pre-pubescent child should ever sound

male.

E. Evidence for gendered speech patterns
in the voices of children

Figure 6(c) indicates substantial variation in the by-

talker random intercepts in our acoustic model. These

effects capture the tendency of listeners to consistently iden-

tify specific talkers as male or female, above and beyond

what can be explained by the acoustic predictors in our

model (even considering the listener- and age-dependent

adjustments). When these by-talker intercepts differ from

zero in the ‘correct’ direction (i.e., negative intercepts for

female talkers), these reflect ‘residual’ gender information

in voices: the tendency for listeners to identify talker gender

more accurately than can be explained by our acoustic

model. As seen in Fig. 12 and 61% of intercepts associated

with female talkers have negative posterior means, while

69% of intercepts for the male talkers have positive poste-

rior means. This means that about two thirds of talker-

intercepts represent talkers whose gender was identified

more accurately than can be explained by our acoustic

model.

In Sec. III A, we reported an advantage for gender iden-

tification in sentences over syllables. Although we did not

FIG. 12. (Color online) Distribution of talker random intercepts for (a)

female and (b) male talkers, ordered by age within sex. Filled points indi-

cate talker intercepts that reflect more accurate gender perception than can

be explained by the model for that talker. Points indicate means, bars indi-

cate 95% highest density intervals of posterior distributions.
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investigate the nature of this effect acoustically in this study,

our results suggest that the stimuli in the sentence and sylla-

ble conditions contained consistent gender information for

most talkers. Figure 13(a) compares classification rates for

individual talkers across both listening contexts. Talkers

near the diagonal were classified in the same way in both

conditions. Male talkers above the diagonal, and female

talkers below the diagonal, were classified more accurately

in the sentence context. Males in the top-left quadrant and

females in the bottom-right quadrant represent cases where

classification changed from incorrect in the syllable context,

to correct in the sentence context. There are no notable cases

of the opposite effect, where classifications change from

correct in syllables to incorrect in sentence contexts.

The distribution of female talkers in Fig. 13(a) resem-

bles a fan shape, with talkers spreading out more along the y
axis as one moves left to right along the x axis. A similar

distribution is seen for male voices, spreading out from the

top right of the figure. These shapes indicate that in many

cases where voices are somewhat ambiguous for isolated

syllables, listeners are extremely accurate for the same voice

in a sentence context. However, given the overlap of male

and female talkers according to gross acoustic cues shown

in Fig. 10(c), it seems unlikely that the sentence improve-

ment could be solely attributed to a more precise estimation

of the same, overlapping acoustic cues. This suggests that

the key difference may be the presence of more dynamic,

prosodic information in the sentence context (Hillenbrand

and Clark, 2009). Since it seems unlikely that gender-based

differences in prosodic structure would be explainable

entirely on the basis of children’s anatomy, this interpreta-

tion further supports the constructivist perspective of gender

information in children’s voices.

Finally, a careful consideration of Figs. 12 and 13 sug-

gests that questions such as “can listeners identify the gen-

der of 7-year olds?” are to some extent ill posed. Figure

13(b) shows that the gender of many voices can be correctly

identified almost perfectly for talkers under 11 years of age,

despite the fact that boys and girls of these ages substan-

tially overlap in their fo and formant frequencies [see

Fig. 11(d)]. Since the expression of gender identity in voice

occurs at the individual level, the gender of one talker may

be correctly identified almost always, while the gender of

another talker may be difficult to identify, or be consistently

misidentified. Thus, although the classification of gender

may be more difficult in prepubescent children, it is clear

that gender information is being conveyed clearly in the voi-

ces of at least some of these children. In other words, the

general confusability of gender in 7-year-old voices does

not negate the clear expression of gender in any one seven-

year-old talker. Taken together, our results provide support

for the notion that the transmission of gender information

from voice can depend on gender-dependent patterns of

articulation, rather than following deterministically from

anatomical differences between male and female talker

(Zimman, 2018).

V. CONCLUSION

Our results indicate that children’s gender can be accu-

rately identified from their speech, in particular when listen-

ers are presented with a longer stretch of speech (i.e.,

sentences vs syllables). Since young boys and girls overlap

almost entirely in the gross acoustic cues that drive gender

perception for adults (fo, average formant frequencies), our

results also suggest that this accuracy is based on the trans-

mission of more subtle gender information. Two likely can-

didates for the “more subtle” acoustic information are

prosodic cues and the source characteristics. Although we

did not find any important role for the source-related predic-

tors (apart from fo), we do not think that this demonstrates

that these predictors have no role in gender perception.

Instead, as with the role for prosodic information, it may be

the case that source information plays an important, but

potentially complicated role in gender perception from

children’s voices. Overall, the accuracy of gender identifica-

tion for young boys and girls in the absence of reliable

FIG. 13. (Color online) (a) Classification rates for individual talkers across

both information conditions. Numbers indicate talker age (males in circles).

(b) Only talkers under 11 years of age are presented. Voices in shaded quad-

rants were identified correctly in both conditions.
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anatomical differences between these talkers supports the

constructivist view that voice gender information has a

strong performative component, rather than following nec-

essarily from talker anatomy.
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