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Researchers investigating the vowel systems of languages or dialects frequently employ normaliza-

tion methods to minimize between-speaker variability in formant patterns while preserving

between-phoneme separation and (socio-)dialectal variation. Here two methods are considered:

log-mean and Lobanov normalization. Although both of these methods express formants in a

speaker-dependent space, the methods differ in their complexity and in their implied models of

human vowel-perception. Typical implementations of these methods rely on balanced data across

speakers so that researchers may have to reduce the data available in the analyses in missing-data

situations. Here, an alternative method is proposed for the normalization of vowels using the log-

mean method in a linear-regression framework. The performance of the traditional approaches to

log-mean and Lobanov normalization against the regression approach to the log-mean method

using naturalistic, simulated vowel-data was investigated. The results indicate that the Lobanov

method likely removes legitimate linguistic variation from vowel data and often provides very

noisy estimates of the actual vowel quality associated with individual tokens. The authors further

argue that the Lobanov method is too complex to represent a plausible model of human vowel per-

ception, and so is unlikely to provide results that reflect the true perceptual organization of linguis-

tic data. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5047742

[TCB] Pages: 500–520

I. INTRODUCTION

The frequencies of the lowest two or three formants are

widely viewed as the primary determinants of perceived

vowel quality (for a review, see Kiefte et al., 2012). These

formants, and the plots representing them, have for decades

been regarded as indispensable tools in studying the vowel

systems of dialects and languages. Although the formant fre-

quencies of a vowel sound contain crucial information about

vowel systems, absolute formant frequencies are also strongly

influenced by physiological differences between speakers. As

a result, vowel formant-frequencies (FFs) cannot be unambig-

uously associated with a given perceived vowel quality.

Researchers investigating vowel systems are primarily

interested in differences in formant patterns associated with

variation in perceived vowel-quality, rather than phonetically-

irrelevant variation (e.g., variation associated with typical

physiological differences between speakers). As a result,

researchers will often use vowel normalization methods that

seek to remove phonetically-irrelevant variation in vowel

formant data, so that the normalized formant patterns will

more closely reflect perceived vowel-quality. For example,

Hindle (1978) states that the ideal normalization method

“will minimize formant differences between individuals

due to inherent physiological factors, but will preserve

distinctions that correspond to perceptibly different vowels”

(p. 167). This conceptualization of a desirable normalization

suggests that the ideal method provides a close approxima-

tion to the perception of human listeners: Two vowels should

lie close together in the normalized vowel space if—and

only if—they have a similar perceived vowel quality.

It is important to keep in mind that normalization meth-

ods are meant to reflect differences in perceived vowel qual-

ity and are not simply scatter-reduction algorithms. A

normalization method that systematically disagrees with the

judgments of human listeners will not be of much use for lin-

guistic research. As noted by Disner (1980), “it is not enough

that [a normalization method] reduce the variance while

maintaining the separation in any given data set; caution

should be exercised to ensure that the trends which remain in

the normalized data are truly linguistic trends and not arti-

facts of the normalization technique itself. It cannot be over-

emphasized that the output of any adequate normalization

procedure must be a correct representation of linguistic fact”

(p. 253). From the perspective of the researcher investigating

variation in vowel quality as a function of dialectal or socio-

logical differences between speakers, the only relevant

“linguistic fact” associated with a formant pattern is the per-

ceived vowel quality associated with it. For example, varia-

tion in F2 is of interest to the linguist primarily to the extent

that it signals differences in a perceptual property such as

fronting.

The above suggests that the “ground truth” against

which the output of normalization methods should be judged

is human vowel-perception. As a result, the desired behaviora)Electronic mail: sbarreda@ucdavis.edu
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of normalization algorithms should be considered in terms of

the behavior of human listeners. This position runs counter

to the treatment of vowel normalization methods primarily

as methodological tools without a necessary theoretical com-

ponent. For example, in discussing the comparison of nor-

malization methods, several researchers (Fabricius et al.,
2009; Flynn and Foulkes, 2011; Thomas and Kendall, 2007)

have suggested that these methods have four distinct motiva-

tions (Fabricius et al., 2009, p. 415):

(a) to eliminate variation caused by physiological differ-

ences among speakers;

(b) to preserve sociolinguistic/dialectal/cross-linguistic

differences in vowel quality;

(c) to preserve phonological distinctions among vowels; and

(d) to model the cognitive processes that allow human listen-

ers to normalize vowels uttered by different speakers.

However, in a discussion of the relative merits of differ-

ent normalization methods, Fabricius et al. (2009) state that

“we focus on goals (a) and (b); moreover, it is the balance

between these two that we see as crucial […] we do not enter

into a discussion of point (d), because it is not relevant for

our purposes in this article” (p. 415). Similarly, Thomas and

Kendall (2007) state that “For sociolinguists and dialectolo-

gists, however, goal [d] is the least important of the four.

[…] it is the first two goals that matter.”

However, note that goals (a) and (b) above result in

potentially opposing goals for normalization methods. For

example, if some speaker has a physiological idiosyncrasy

that results in their produced vowels sounding more open

to listeners, a method cannot remove the physiologically-

motivated variation in the formant patterns while also

maintaining the differences in the perceived vowel-

qualities. In these situations, it seems clear that researchers

interested in patterns in perceived vowel-quality must

favor goal (b) at the expense of goal (a). As a result, nor-

malization methods should not be approached as models of

variation in formant patterns between speakers, but rather

as models of the human perceptual accommodation to this

variation.

A. Normalization methods as models of vowel
perception

We may consider a 3-vector of formant frequencies f
specifying F1, F2, and F3 for a vowel and corresponding to

a specific location in the 3-formant vowel space. Because of

phonetically-irrelevant between-speaker variation in the for-

mant space, the position denoted by f cannot be unambigu-

ously associated with a specific perceived vowel-quality.

However, human vowel perception involves a process

whereby listeners are easily able to associate a given formant

pattern with a specific perceived vowel-quality with a high

degree of consistency and accuracy. This can be thought of

as a process which takes in the formant pattern f and assigns

this to a specific location on a perceptual space that is unam-

biguously related to perceived vowel quality (the human per-

ceptual space). The perceived vowel-quality associated with

a specific f would then be determined by its position in the

perceptual space rather than by its position in the formant

space. A single set of formant values are associated with dif-

ferent vowel qualities to the extent that they have different

locations in the perceptual space, and two different formant

patterns (f and f0) can correspond to the same perceived

vowel quality to the extent that they correspond to similar

locations in the perceptual space.

Vowel normalization methods also perform mappings of

formant patterns f to normalized (rather than perceptual)

spaces. Normalization methods must include operations that

have analogues (in process or outcome) to those of human

vowel perception. If not, the normalized space is unlikely to

match the human perceptual space, which will lead to errors

in the apparent vowel-quality associated with any given

vowel token. Such errors are problematic because research-

ers rely on the locations of individual tokens in the normal-

ized space being associated with specific perceived

vowel-qualities. For example, if a speaker produces a token

with a higher normalized F2 than the category mean, a

researcher may say this speaker produces a “fronted” variant

of the vowel. In this case, a specific location in the normal-

ized space is associated with a specific linguistic fact (front-

ing). If a group of speakers produce this phoneme in roughly

the same location in the normalized space, a researcher may

conclude that the group of speakers is all fronting their

vowel. However, it is important to keep in mind that this

conclusion is only valid to the extent that human listeners

agree that these vowels are perceptually fronted. If listeners

considered that only about half of the vowels sounded

fronted, it would not be appropriate to claim that all speakers

in the group front this vowel.

Given that different normalization methods apply differ-

ent transformation to the formant patterns, they suggest dif-

fering perceptual organization for the same set of tokens.

However, if we accept that the “true” vowel quality is the

one determined by human listeners, then to the extent that

different normalization methods suggest different patterns of

vowel-quality variation they cannot all be right. As a result,

the theoretical assumptions embedded within the structure of

a normalization method have serious practical consequences

for the research carried out by linguists using these methods.

By selecting a normalization method, researchers are com-

mitting to a specific mapping of formant frequencies to per-

ceived vowel-qualities; and hence, we would argue, they are

implicitly adopting a class of perceptual models consistent

with that mapping.

1. Overnormalization

As a first approximation we can imagine that since nor-

malization methods are a response to between-speaker varia-

tion, the ideal normalization method is the one which

minimizes differences between the speakers of a dialect in

the normalized space by minimizing within-category varia-

tion. However, there will always be within-category variabil-

ity from token to token when produced by a single speaker.

From the researcher’s (and listener’s) perspective, within-

category variability represents the inseparable conflation of

unintentional repetition error and intentional sub-phonemic
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linguistic variation. As a result, “error” in the perceptual

space represents subphonemic variation of potential linguis-

tic import. Thus, in some cases a normalization method

could remove “too much” variation, e.g., by removing vari-

ability that was not phonetically-irrelevant. When this

occurs, the method has “overnormalized” the data in

question.

In the extreme case of overnormalization we can imag-

ine a method that identifies the category of a vowel and then

assigns it the mean normalized formant values for that cate-

gory. Such a method would maximize the similarity of

vowel spaces between speakers and minimize within-

category scatter in the normalized space, however, no

researcher would seriously consider using such a method.

We may reject the above method because it is not a

perceptually-plausible method of normalization and it will

substantially overnormalize vowel data. The above method

will not reflect any subphonemic variation between vowel

tokens, making them artificially more similar than they

ought to be given the vowel qualities associated with the

sounds.

Assessing the degree of overnormalization can only be

done with reference to the “correct” (i.e., phonetically irrele-

vant) variation to remove, which is ultimately determined by

human vowel-perception. As a result, although exact pro-

cesses of human vowel perception are not known, discussion

of the behavior of normalization methods must involve a

consideration of the theoretical and empirical support for the

outcomes of the transformations carried out by these meth-

ods. A normalization algorithm that maximizes some perfor-

mance metric but does not reflect the true structure of the

perceptual space may seriously impede the ability of

researchers to make reliable inferences based on normalized

vowel data.

In this investigation we will focus on two normalization

methods: single parameter log-mean normalization (Nearey,

1978) and Lobanov (1971) normalization. Both of these

methods represent vowels within a speaker-dependent space

but differ substantially in terms of their complexity. In the

remainder of this section we will introduce each method, and

consider the implications of each method for theories of

vowel perception.

B. Single parameter log-mean normalization

Single parameter log-mean normalization (henceforth

log-mean normalization) is motivated by the constant ratio

hypothesis of vowel perception, one of the earliest accounts

of the relation between the vowel systems of speakers of the

same dialect, dating back to at least Lloyd (1890) [see Miller

(1989) for additional references]. In its broadest form, it

states that within a dialect the formant pattern produced by a

speaker for a given vowel is relatable to the formant pattern

produced for that vowel by any other speaker of the dialect

by a single ratio or scale factor. As a result, the formants pro-

duced by a speaker s for a vowel v and formant number k
(Fkvs) are relatable to a dialect-specific reference formant-

pattern (F�kv) by a single speaker-dependent parameter (qs) as

in Eq. (1),

Fkvs ¼ F�kv � qs : (1)

In its log-formant version [the “constant log interval”

hypothesis (Nearey, 1978)] presented in Eq. (2), each com-

ponent of Eq. (1) is replaced by the logarithm of the corre-

sponding term, and ws is now a speaker-dependent

displacement term rather than a multiplicative constant,1

Gvks ¼ N�vk þ ws : (2)

Log-mean normalization attempts to estimate the

speaker-dependent parameter ðws) that relates the formants of

different speakers of a dialect, so that it can be removed from

the observed log-transformed formant frequency (Gvks) to

reveal the dialectal reference pattern (N�vk). The first step is

the estimation of the speaker parameter ws.We adopt the con-

vention that the reference-pattern terms (G�vk) are constrained

to sum to zero across all vowels and formants. If this is done,

the speaker parameter (ws) represents the mean logarithmic

formant frequency (the log of the geometric mean) produced

by a speaker across all the vowels in their system. Although

the exact value of the speaker parameter for any given speaker

cannot be exactly known, it may be estimated for balanced

complete data using the log-mean FF produced by that

speaker (denoted using a bar over the variable, �Gs) for some

set of observed vowels, using the formula provided in Eq. (3),

�Gs ¼ ŵs ¼
1

V � K � T
XV

v¼1

XK

k¼1

XT

t¼1

Gvkst ; (3)

where v is the vowel category, k is the formant number, s is

an index for the speaker in question, and t is the token (i.e.,

repetition, or in recording studio jargon “take”) number. The

capitals V, K, and T are the number of vowel categories, for-

mants, and tokens, respectively.

Formant frequencies are then normalized by subtracting

the estimated speaker parameter (�Gs) from the logarithm of

the observed formant frequencies2 as in Eq. (4), which has

effectively re-arranged the terms in Eq. (2),

Nvk ¼ N̂
�
vk ¼ Gvks � �Gs : (4)

Note that the individual values of Nvk provide estimates of

the dialectal reference pattern (N�vkÞ but are not expected to

equal it exactly for any given observation due to repetition

error.

1. Single-parameter log-mean normalization
as a perceptual model

All other things being equal, proportional changes to the

dimensions of each section of tube in multi-tube resonators

(such as the vocal tract) will result in increases/decreases to

their resonant frequencies according to a single, multiplica-

tive scale factor (Markel and Gray, 1976). So, when speakers

who differ primarily in vocal-tract length adopt similar artic-

ulatory gestures, they will tend to produce formant patterns

that differ according to a single factor related to the differ-

ence in their vocal-tract lengths. On account of this, the
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speaker parameter ws can be thought of as encoding informa-

tion primarily related to speaker vocal-tract length, and the

constant-ratio hypothesis can be thought of as modeling vari-

ation between speakers that is attributable primarily to dif-

ferences in the vocal-tract lengths of different speakers.

It has been suggested that differences in vocal-tract

geometry between speakers should result in deviations from

constant ratios in formant patterns (Fant, 1966, 1975).

However, several investigations have found that the influ-

ence of specific vocal tract geometry on formant patterns has

been overstated and that the primary determinant of pro-

duced output is simply overall vocal-tract length (Goldstein,

1980; Nordstr€om and Lindblom, 1975; Turner et al., 2009).

It has also been argued that different speakers adopt compen-

satory gestures to produce outputs that differ from the

dialectal-reference pattern by a single factor, despite poten-

tially different vocal-tract geometries. For example, Turner

et al. (2009) report that the oral/pharyngeal cavity ratio

varies continuously as a function of speaker height (and

vocal-tract length). However, in an analysis of vowel for-

mant patterns, the authors find that “once the measurement

noise has been properly modeled, it is observed that the for-

mant patterns of the vowel sounds do not vary systemati-

cally, either with the size or the sex of the speaker, despite

the obvious non-uniformity in the growth of the anatomical

cavities oral and pharyngeal” (p. 2375). Turner et al. (2009)

conclude that a notational variant of constant-ratio hypothe-

sis, which they call the constant formant-pattern model, is

essentially correct for the data they analyzed, stating that

“the anatomical distinction between the oral and pharyngeal

divisions of the vocal tract is immaterial to the acoustic

result of speech production. For a given vowel, the tongue

constriction is simply positioned where it produces the

appropriate ratio of front-cavity length to back-cavity length,

independent of the location of the oral-pharyngeal junction”

(p. 2379).

The above suggests that speakers attempt to produce

outputs that differ primarily in ways consistent with the

constant-ratio hypothesis. The constant-ratio hypothesis, or

something very close to it, is also well-supported in percep-

tion. In particular, modification of formant patterns via

vocoding that comports with the constant-ratio hypothesis

(e.g., uniform scaling of the spectral envelope shape) gener-

ally preserves vowel quality and intelligibility (Assmann and

Nearey, 2008). This fact has allowed uniform-scaling of

speech sounds to be used in experimental research in order

to simulate size differences between speakers (Assmann

et al., 2006; Barreda, 2017; Smith et al., 2007). Furthermore,

uniformly-scaled vocoding has been used for decades in the

entertainment industry to manipulate the apparent size of

voice actors (Lawson and Persons, 2004; Winer, 2012).

Other factors such as f0 and the higher formants (F4 and

above) can sometimes alter perception of lower-formant pat-

terns in ways not explicable via the constant-ratio hypothe-

sis, especially when the statistical relations among all these

measures are drastically altered from typical values (Nearey,

1989; Barreda and Nearey, 2012). However, we know of no

experiments showing that the relations implied by the

constant-ratio hypothesis can be substantially altered in a

vowel system without “damaging” phonetic identity.

In addition, the estimation of the single speaker-

parameter used in log-mean normalization likely represents

a tractable problem for the listener. As noted by Nearey

(1978), given that a dialect only has a limited number of

vowel phonemes (and corresponding acceptable formant-

patterns), the speaker-dependent scaling parameter (ws or an

analogous value) can be estimated from a single vowel token

whose category is known. At least two pattern-recognition

studies have shown that given dialect constraints on formant

patterns, the accurate estimation of ws is also feasible from a

single token even when the vowel quality of that token is

unknown (Nearey and Assmann, 2007; Turner et al., 2009).

This is an important consideration given that listeners are

able to accurately and consistently associate individual

vowel tokens with a perceived vowel quality, even when pre-

sented with isolated vowels or CVC words from multiple

speakers (Hillenbrand et al., 1995; Peterson and Barney,

1952).

Taken together, the above suggests that speakers attempt

to produce formant patterns that vary within-category

according to a single multiplicative parameter, and that vow-

els that vary in such a manner are typically judged to have

“the same” vowel quality according to listeners. Further, the

accurate estimation of this parameter is feasible even from

very limited numbers of tokens from a speaker, suggesting

that listeners could reasonably be expected to estimate such

a parameter in speech perception. As a result, log-mean nor-

malization has a good deal of empirical and theoretical sup-

port as a plausible model of human vowel perception.

C. Lobanov normalization

As an alternative to log-mean normalization, we will

consider the formant-wise standardization method proposed

by Lobanov (1971). To normalize vowel data using the

Lobanov method, the mean and standard deviation [referred

to by Lobanov as the root-mean square (RMS)] are calcu-

lated (in Hertz) for each of formant (k) and speaker (s),

across all vowels and tokens produced by that speaker [Eqs.

(5) and (6)]. Then, formant frequencies are standardized

using these estimated speaker parameters [Eq. (7)],

l̂ks ¼
1

V � T
XV

v¼1

XT

t¼1

Fvkst ; (5)

r̂ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

V � T
XV

v¼1

XT

t¼1

Fvkst � l̂ksð Þ2
s

; (6)

z�vk ¼
Fvks � l̂ks

r̂ks
: (7)

According to Lobanov, l̂ks and r̂ks represent the

“personal information” imparted onto the formant pattern by

the speaker. So, after standardizing formant patterns with

respect to these parameters, Lobanov normalization seeks to

produce normalized formant patterns that are “[statistically]

independent of [the] exact parallel shift and exact linear
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compression or expansion” (Lobanov 1971, p. 607) associ-

ated with each speaker. Thus, Lobanov normalization was

explicitly designed to remove speaker-specific variation in

productions with no regard for the potential perceptual con-

sequences of the transformations.

1. Lobanov normalization methods as a perceptual
model

Lobanov normalization was proposed as a tool to mini-

mize mistakes in the automatic classification performance of

Russian vowels when produced by more than one speaker. As

a result, the objective of Lobanov normalization is to maxi-

mize the performance of statistical classifiers and not to reflect

or preserve any linguistic fact (i.e., perceived vowel-quality).

To our knowledge, no one has proposed a model of human

vowel perception that is compatible with the assumptions of

Lobanov normalization, though McMurray and Jongman

(2011) have proposed a general theory of speech perception

that is largely compatible with the assumptions of the

Lobanov model. In addition, there are two main problems

with considering Lobanov normalization as a model that is at

least analogous to human vowel perception: the tractability of

the problem and the normalization of vowel-space dispersion.

Each of these issues has the potential to result in misalign-

ments between the Lobanov normalized space and the human

perceptual space, which can lead to incorrect conclusions

drawn from normalized formant patterns.

Lobanov normalization requires the estimation of two

parameters for every formant, meaning it would likely involve

the estimation of at least six parameters for human vowel per-

ception. It is not clear how so many independent parameters,

in particular those related to formant dispersion, could be esti-

mated from a single vowel with a high degree of accuracy. For

example, consider two speakers of a vowel system with /a i u/

that have identical Lobanov parameters except for the standard

deviation of F2. Assume also that the mean of F2 coincides

with that of /a/ for both speakers. These speakers have identi-

cal positions for their /a/ in Hertz, but one speaker would

have more peripheral /i/ and /u/. If a listener heard both

speakers produce /a/ we would expect them to have the same

vowel quality. If the listener then heard the same speakers pro-

duce /u/, would they also sound the same despite the fact that

one speaker would have a higher F2? Lobanov normalization

would control for the increased peripherality of the high vow-

els, suggesting that these should also sound “the same” to lis-

teners. On what basis could the listener know that this

apparent difference in fronting is actually a result of a differ-

ence in F2 dispersion without knowing that one speaker also

has a more peripheral /i/? The apparent intractability of the

estimation of Lobanov parameters from limited numbers of

observations suggests that human listeners are likely doing

something fundamentally different in vowel perception, either

because human listeners control for fewer parameters in per-

ception, or because the estimation of parameters is constrained

in important, but as yet unspecified, ways.

The second problem is that although physiological dif-

ferences will result in differences in vowel-space dispersion

between speakers, articulatory variation not related to

physiological differences can also affect vowel-space disper-

sion. Furthermore, it does not appear that vowel space dis-

persion always represents “phonetically-irrelevant”

information that should be normalized away in all situations.

For example, vowel space area and related measures of

degree of deviation from a central neutral formant are widely

viewed as useful for understanding aspects of speech intelli-

gibility. Speakers showing “clear speech” formant patterns

typically have more expanded vowel spaces than those in

more relaxed or conversational speech (Ferguson and

Kewley-Port, 2007). Foreigner- and infant-directed speech

has also been shown to sometimes show formant space area

expansion (Uther et al., 2007). There also appears to be a

relationship between vowel-space dispersion and the percep-

tion of indexical characteristics related to speaker gender

and sexual orientation (Heffernan, 2010; Munson, 2007).

Finally, it has been suggested that some aspects of apparent

non-uniform scaling in formant averages between male and

female speakers may be due to the fact that in some socio-

cultural contexts, female speakers may tend to produce

“clearer,” more dispersed speech (Goldstein, 1980; Diehl

et al., 1996).

The perceptual salience of vowel-space dispersion sug-

gests that listeners may have some expectations regarding

the amount of vowel space dispersion to expect for a given

speaker, so that deviations from this may be phonetically

meaningful. For example, we can imagine two speakers who

have identical physiological characteristics and who, all

other things being equal would produce identical acoustic

outputs (e.g., identical twins). Consider a situation where

these speakers differed noticeably in their vowel-space dis-

persion so that one speaker produced a larger vowel space

than the second. Given the results outlined above, it would

be expected that the enlarged vowel space could result in

phonetically-meaningful differences: the larger space will

result in clearer speech, and may be associated with specific

indexical speaker-characteristics related to gender or sexual

orientation (among other things). However, Lobanov nor-

malization will equalize the vowel spaces of these two

speakers, completely removing any differences between the

productions of the two speakers in the normalized space.

Log-mean normalization does not include speaker-

dependent parameters for vowel space dispersion. However,

the constant ratio hypothesis on which it is based entails a

tight relationship between the speaker scale-factor and the

dispersion of the vowel formants when frequencies are mea-

sured in Hertz. For example, consider the area of a triangle

outlined by the /i a u/ produced by one speaker with a scaling

factor of qs. We can imagine that this is an equilateral trian-

gle whose sides equal ds, and whose area (A ¼ ð
ffiffiffi
3
p

=4Þd2
s )

provides a measure of formant dispersion. If another speaker

with a shorter vocal tract (a higher scale factor qs0 Þ produces

the same vowels, each of these vowels will have higher for-

mant frequencies by a factor of Dq ¼ qs0=qs , where Dq > 1.

This has the effect of increasing the distances between the

vertices of the triangle by a factor of Dq; which results in an

increase of the area of the vowel space proportional to the

square of the same factor (i.e., A0 ¼ ð
ffiffiffi
3
p

=4Þd2
s D

2
q). As a

result, if a speaker has a standard deviation for a formant

504 J. Acoust. Soc. Am. 144 (1), July 2018 Santiago Barreda and Terrance M. Nearey



frequency that is 20% higher overall than another, their

vowel space area in a two-dimensional formant space will be

approximately 44% larger when measured in Hertz, all other

things being equal. Thus, we may state that between-speaker

differences in average formant frequency due to vocal-tract

length are necessarily related to expansions in vowel disper-

sion when formant measurements are measured in Hertz.

In contrast, when considering variation between speak-

ers in a log space the multiplicative speaker parameter

becomes an additive constant [Eq. (2)]. Unlike multiplica-

tion, addition will not result in expansions or contraction of

the vowel spaces of different speakers. Instead, variation in

formant patterns of the kind associated with vocal-tract

length differences will only result in translations of the

vowel spaces of different speakers along a given dimension.

As a result, considering formant patterns in a log-space will

automatically control for differences in dispersion in the lin-

ear Hertz space that can be directly attributable to changes in

vocal-tract length. Importantly, this control is constrained by

the relationship between resonator size and resonance fre-

quencies and does not involve the estimation of independent

parameters. In the absence of a better understanding of the

relationship between vowel-space dispersion and perceived

vowel-quality, normalization methods that use independent

parameters to equalize vowel-space dispersion between

speakers may leave themselves particularly susceptible to

overnormalization by making the vowel spaces of different

speakers “too equal” with respect to dispersion.

In summary, there is little to no theoretical or empirical

support for Lobanov normalization as a plausible model of

human speech perception. In particular, Lobanov normaliza-

tion may represent an unrealistically-complicated model in

light of rapid listener adaptation to between-speaker differ-

ences. Lobanov normalization may also result in removal of

legitimate phonetic variation between tokens by indepen-

dently normalizing for vowel-space dispersion along each

formant. As a result, Lobanov normalization may not result

in an accurate representation of the linguistic variation in the

vowel productions of different speakers.

II. NORMALIZING MISSING OR UNBALANCED DATA
USING A REGRESSION FRAMEWORK

It has been noted that normalization may not be appro-

priate for cross-language, or cross-dialectal, comparisons

because of the differing vocalic inventories across lan-

guages (Adank et al., 2004; Disner, 1980). In fact, the prob-

lems associated with cross-language normalization may

also arise when listeners are compared within-dialect for

unbalanced subsamples of vowels and tokens for each

speaker. Estimating speaker parameters using different

vowel inventories for different subsets of speakers can

result in artificial shifts between the normalized vowel-

spaces of these speakers. These shifts can cause specific

locations in the normalized space to be associated with dif-

ferent perceived vowel qualities for different speakers, a

situation which runs contrary to the purpose of normaliza-

tion. Figure 1 presents an example of how normalization

using different vowel subsets may incorrectly suggest dif-

ferences in vowel quality between speakers.

An outline of how unbalanced data lead to artifactual

shifts in normalized vowel spaces will be given with refer-

ence to the operations of log-mean normalization, though the

general reasoning will apply to most of the speaker-

dependent parameters used by different normalization meth-

ods. A more complete account of what is being estimated in

Eq. (3) is presented in Eq. (8),

�Gs ¼ ŵ
Vf g

s ¼wsþC Vf g þ gs ¼
1

V �K �T
XV

v¼1

XK

k¼1

XT

t¼1

Gvkst ;

(8)

where ws is the underlying scale factor for the speaker s,

{V} is the set of vowels used to perform the estimation,

wsfVg is the apparent scale-factor when estimated based on

vowel inventory {V}, CfVg is an inventory displacement

factor that depends on the average formant-patterns of the

exact vowel inventory{V}, and gs is an estimation error for

that speaker. Thus, in practice, �Gs could be viewed as an

FIG. 1. Vowels produced by two speakers with different overall log-mean FFs. Circled symbols represent the speaker with the lower FFs. (a) Arrows indicate

the change in the high FF vowels relative to the low FF vowels after log-mean normalization with full inventories for both speakers. (b) Systems have been

aligned with respect to their overall log-mean FFs, resulting in tighter clustering of individual categories. (c) /u/ has been omitted for the high FF voice, and
�Gs has been calculated for each speaker using Eq. (3) and the available vowels. This results in a higher centroid for the high FF voice and an apparent larger

difference between the two speakers. (d) When the systems in (c) are brought into alignment based on the biased �Gs estimate there will be artefactual differ-

ences between the normalized vowel spaces of the two speakers. Compare the large discrepancies in panel (d) with the small ones in (b) based on the same

underlying vowel systems.
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estimate of the underlying ws plus an inventory-specific

constant CfVg.
Under a fixed inventory {V} for all speakers of interest

{S}, between-subject differences in �Gs as calculated by Eq.

(3) will be due to ŵ
fVg
s and estimation error, but not CfVg

since this will be the same for all speakers in {S}.

Normalizing vowels by �Gs will remove variation due to

speaker the single speaker parameter, as well as a fixed

inventory constant CfVg. This is not problematic provided

the vowel inventory, and CfVg, is the same for all speakers.

However, in the event that different speakers have different

vowel inventories, estimates of �Gs will also include what

will be referred to as an “inventory bias.” More explicitly,

�Gs ¼ ŵ
Vsf g

s ¼ ws þ C Vsf g þ gs

¼ 1

K

XK

k¼1

1

Vs

X
v2fVsg

1

Tvks

XTvks

t¼1

Gvkst; (9)

where fVsg is a speaker-dependent inventory of vowels.

Thus, in the unbalanced case, differences in �Gs for two

speakers, s and s0 (�Gs � �Gs0) will include the difference in

their scale factors (ws � ws0 Þ, but also inventory-dependent

differences (CfVsg � CfVs0 gÞ. As a result, single-parameter

log-mean normalization will only eliminate speaker effects

effectively when inventories fVsg and fVs0 g are the same

across speakers.3

The problems with cross-language normalization will

also arise when applying log-mean normalization to a single

dialect with missing or unbalanced data across speakers.

This is reflected in Eq. (10), which updates Eq. (9) to include

differing vowels, and differing formants for different vowels,

across speakers,

�Gs ¼ wfVsKvsg
s ¼ ws þ C VsKvsf g þ gs

¼ �Gsa
¼ 1

Kvs

XK

k¼1

1

Vs

X
v2 Vsf g

1

Tvks

XTvks

t¼1

Gvkst : (10)

In the case of unbalanced number of tokens, the

researcher can calculate the within-category average for

each vowel, for each speaker, before proceeding to calcula-

tion of �Gs, effectively using a weighted-mean to estimate

the parameter. This approach is formalized in Eq. (11),

where the notation Tvks indicates there may be different

numbers of measured tokens for each formant of each vowel,

and Tvks > 0 for all v, k, s,

�Gs ¼
1

V

XV

v¼1

1

K

XK

k¼1

1

Tvks

XTvks

tvks¼1

Gvkst : (11)

A more difficult problem arises when no observations

exist at all for one or more vowel categories for subsets of

the speakers in the dataset. This may be due to loss of data,

noisy recording conditions, or simply the inability to collect

a full vocalic inventory for all speakers. A related problem

arises in the case where one or more formants cannot be

tracked for any given reason, a situation that is not uncom-

mon. In either of these cases, estimates of �Gs using Eq. (11)

will result in different inventory biases for each speaker with

missing data.

A. Approaches to missing data in normalization

The simplest approach to dealing with missing data is to

proceed with normalization as usual and estimate speaker

parameters based on unbalanced samples for different speak-

ers with no controls. This approach will result in biases in

the estimation of the different speaker parameters and will

result in artificial asymmetries in normalized vowel-spaces

across speakers (as in Fig. 1).

One way to avoid introducing such biases in the estima-

tion of �Gs is to perform a “complete case” analysis (Rubin

and Little, 2002, Chap. 3) by removing data from some

speakers to produce a balanced subsample across all speak-

ers. There are two ways this could be done. First, any

speaker who is missing any vowel category could be omitted

from the analysis. This option is undesirable due to the loss

of data; a method that allows this data to be used is prefera-

ble. Second, some vowel-categories could be omitted for all

speakers when any speakers are missing those categories (or

formants from those categories). Speaker parameters could

be estimated based on the balanced subsample, and normali-

zation could proceed as normal.

Although the second approach will not introduce artifi-

cial biases into the vowel spaces of different speakers, it will

result in an increase in the variance of estimated speaker

parameters. For example, the standard error of �Gs will

increase by a factor of
ffiffiffi
n
p

=
ffiffiffiffiffiffiffiffiffiffiffiffi
n�m
p

where n is the total num-

ber of categories, and m is the number of missing categories.

This fact has important consequences for the performance of

normalization methods since increased error in the estima-

tion of speaker parameters may lead to overnormalization,

which will directly translate to error in the apparent vowel

quality associated with different tokens. In effect, by

decreasing the sample size to accommodate missing data we

are trading off biases in the data of some speakers for

increased noise in the normalized data of all speakers.

Either approach outlined above may be acceptable under

certain circumstances, however some researchers (e.g., those

working with speech corpora, endangered languages, or spe-

cial populations) may not have full or balanced vowel inven-

tories for any given speaker or may be missing large

numbers of vowels from some speakers. It is difficult to

know how widespread the issue of missing formant data is,

since in some cases researchers may be omitting speakers or

performing complete-case analyses in order to restore bal-

ance to their data. However, two-large publicly-available

datasets (Assmann and Katz, 2000; Hillenbrand et al., 1995)

feature many instances of missing data, untrackable for-

mants, and apparent pronunciation errors. Each of these

datasets were recorded in ideal laboratory conditions sugges-

ting that a lack of balance in formant datasets is likely a

common occurrence. For example, the Hillenbrand et al.
(1995) dataset includes productions of 12 vowels for 138

speakers for a total of 1668 vowel tokens. However, only 98
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speakers have a complete set of F1, F2, and F3 observations

for their “steady-state” vowel tokens, and only 3 vowel cate-

gories are represented fully across all speakers. In cases with

unbalanced data, researchers may wish to apply normaliza-

tion without omitting data or unnecessarily increasing the

error in the estimates of their speaker parameters. To address

this methodological limitation, a regression-based approach

to normalization that is tolerant to certain missing-data situa-

tions will be described.

B. Speaker parameter estimation as a regression
problem

We will outline the estimation of the log-mean parame-

ter used in log-mean normalization using a regression frame-

work. The possibility of extending this approach to some

other normalization methods is discussed in Sec. III D.

If all vowel categories are present and balanced across

all speakers, estimating �Gs using the regression approach to

be outlined will yield identical results to Eq. (3). However, if

vowel categories are unbalanced, or more importantly, if

some measurements are not present at all, this method will

provide estimates of �Gs for each speaker that are not strongly

or predictably affected by the missing data in most cases.

This alternative approach to log-mean normalization is an

instance of a standard method of estimation in certain miss-

ing data situations from the applied statistics literature

(Rubin and Little, 2002, p. 27). This approach is generally

appropriate if the “missing data mechanism” is “ignorable,”

which means that:

(1a) The data are MAR (missing at random), “… the rea-

son for the occurrence of missing data in Y does not

depend on any Y values.”

(2b) Distinctness: “the parameters of the missing data

mechanism do not depend on the value of the analysis

of variance parameters.”

One could run into problems with assumption (2a), for

example, if measurements of extremely high or low for-

mant frequencies were missing because of a priori limits of

a formant tracker. A problem involving (2b) might arise if

certain vowels were for some reason more likely to be

missing from certain speakers. This situation is quite likely

to arise if for example certain speakers’ voices are more

difficult to analyze, resulting in more missing values.

However, this is of lesser consequence, pertaining largely

to the variance of the estimates, rather than bias. Rubin and

Little further note that: “MAR [(2a)] is typically regarded

as the more important condition here, in the sense that if

the data are MAR but distinctness [(2b)] does not hold,

inference about the ignorable likelihood is still valid from

the frequency perspective, but not fully efficient” (Rubin

and Little, 2002, p.120).

The relationship presented in Eq. (2) can be updated to

include estimated values for the dialectal reference pattern

(N�vk), the speaker displacement terms (ws), and an error

term, as in Eq. (12),

Gvkst ¼ �Nvk þ �Gs þ et : (12)

When presented as in Eq. (12), it is clear that estimation

of the reference formant-pattern (�Nvk) and the speaker-

displacement terms (�Gs) may be treated as a linear regres-

sion problem. The model equation presented in Eq. (12) con-

tains only categorical predictors, with a total of Sþ ðV� KÞ
�1 predictor coefficients: S �Gs terms and ðV� KÞ � 1 �Nvk

terms for a dataset with productions from S speakers for V
vowels specified on K formants. The key advantage to esti-

mating �Gs via regression is that the inclusion of the �Nvk

terms allows each observed formant frequency to provide

information regarding �Gs by controlling for expected vowel-

and formant-specific deviations from this value [as in

Eq. (12)]. As a result, one or more missing data points

simply result in fewer total observations, instead of introduc-

ing inventory difference biases as would be the case when

using Eq. (3).

The standard “pure error term” in Eq. (12) is assumed to

be the same (in log frequency units) for every speaker, every

vowel, and every formant, and the errors are assumed uncor-

related with those of any other speaker, vowel, or formant

(Nearey, 1978). In the widely-used terminology of analysis

of variance, this effectively treats speaker and formant-

pattern related terms as “fixed effects.” More complex situa-

tions involving more sources of variation (e.g., by treating

subject as a random effect in a mixed-effect model) can be

imagined, but it is not clear whether such models are neces-

sary, or appropriate, for the normalization of vowel data.

C. Implementation

The use of ordinary least-squares regression to estimate
�Gs for a set of speakers will be outlined with reference to

the statistical software R (R Core Team, 2017). However,

this approach may be extended to any other method that

allows for regression to be carried out. The method will be

outlined with respect to a vowel system with V vowels,

specified on K formant frequencies, representing data from S
speakers. Equation (13) presents a regression equation that

predicts the log-transformed FFs for a given vowel, formant

and speaker ðGvks) as the sum of a speaker displacement

term (Ss), and normalized vowel-formant effects (Nvk),

which are estimates of the dialectal reference pattern N�vk.

Gvks ¼ Ss þ Nvk þ e: (13)

To implement this analysis in R, it is first assumed that

the data are available in a data frame object in a “long” for-

mat with only one log-formant measurement per row.

Further, it is assumed that each row of the data frame has (at

least) four columns, labeled: G for the single formant mea-

surement, V indicating vowel, K indicating formant number,

and S indicating the speaker. It is important that categorical

variables coded with numbers (e.g., subject numbers, for-

mant numbers) be represented as categorical variables

(“factors” in R) so that they are not treated as continuous

predictors in the model. Given this data, an additional

variable (N) may be created to represent the Nvk terms, using

the R command: N¼factor[interaction (V,K)].

Equation (14) presents the R syntax for implementing
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Eq. (13) using the vectors G (log-transformed FFs), and the

factor variables S (Speaker), and N (Formant�Vowel),

M ¼lm ðG � 0þSþN;contrasts
¼ listðN ¼contr: sumÞÞ: (14)

The model specified in Eq. (14) specifically omits an

intercept (by including a zero in the right-hand side of the

equation), and uses treatment coding (sometimes referred to

as “indicator” or “dummy” coding) for the S term, which

means that each level is compared to a reference level. “Sum

coding” (sometimes referred to as “deviation” coding) is

used for the N term, which means that all levels of the term

are constrained to sum to zero. Usually, all the levels of a

factor cannot be estimated because of collinearity with the

intercept term. However, in this case the intercept term is not

of interest while estimating all S Speaker coefficients is a key

goal of the analysis. By default, R uses the degree of freedom

gained by omitting the intercept to estimate all levels of the first

factor entered in the model equation. As a result, if the variable

representing Speakers is in first position in the model equation,

all S Speaker levels will be directly estimated (rather than being

compared to a reference level). The estimates of the Speaker

terms �Gs may be accessed conveniently by the R command:

S¼dummy.coef(M)$S, and those of the Vowel-Formant

terms by N¼dummy.coef(M)$N. Unfortunately, the docu-

mentation for the features of R exploited in the code above is

somewhat scattered. See Venables and Ripley (2002, p.165 ff.)

or Hastie and Chambers (1992) for more details, as well as the

help files for the R functions contr.sum, model.matrix, and

dummy.coefs.

D. Extending the regression approach to other
normalization methods

The difficulty of extending the regression approach to

the estimation of parameters for other normalization meth-

ods will depend on expected distribution of the necessary

parameters and the ease with which these parameters can be

estimated using a regression framework.

It is straightforward to adapt the approach presented in

Sec. II B to formant-wise log-mean normalization, some-

times referred to as “formant intrinsic” log-mean normaliza-

tion (Nearey, 1978). This method calculates an independent

log-mean parameter for each formant for each speaker, and

then carries out normalization by subtracting the formant-

wise log-mean parameter from the log-transformed frequen-

cies for each formant. Although this method may seem

substantially different from single-parameter log-mean nor-

malization, the high correlations between formant-mean

parameters within-speaker (see Table II in the Appendix)

mean that formant-wise and single-parameter log-mean nor-

malization tend to yield similar results. However, the

increased complexity of the formant-wise log-mean method

comes at the expense of increased errors in parameter esti-

mates (due to the reduction of data used to calculate each

formant-wise parameter) and associated increases in sam-

pling overnormalization (see Sec. III). Furthermore, the

increased complexity does not appear to be theoretically or

empirically justified since vowel productions do not seem to

vary in ways that would require fully independent scaling

estimates for each formant, and listeners do not seem to

independently control for the scaling of each formant in per-

ception. For these reasons, although we present an extension

of the regression approach to this normalization method, we

recommend the use of single-parameter log-mean normaliza-

tion for linguistic research.

The easiest way to do this is to simplify the approach

presented in Eq. (14) so that the equation for each formant is

carried out independently. For each formant, k, we first

select as G the data for that formant only (rather than stack-

ing multiple formants) and eliminate the k subscript. An

additional variable (N) may be created to represent the Nv

terms, using the R command: N¼factor(V). Equation

(15) presents the R syntax for implementing Eq. (14) using

the vectors G (log-transformed FFs), and the factor variables

S (Speaker) and N (Vowel),

M ¼lm ðG � 0þSþN;contrasts
¼ listðN ¼contr: sumÞÞ: (15)

The estimated speaker means formant k can be extracted

as S¼dummy.coef(M)$S, and can then be used to nor-

malize FF by subtracting each subjects S coefficient from

the log formant frequencies produced by that speaker for

that formant.

The relationship between the Lobanov parameters, the

dialectal template, and observed formant frequencies

assumed by Lobanov normalization was presented in Eq.

(7). These terms can be rearranged to resemble a regression

form as in Eq. (16),

Fvks ¼ r̂ksz
�
vk þ l̂ks þ e: (16)

Equation (16) expresses the observed formant frequencies

(Fvks) for a formant as a function of the formant standard devi-

ation for a speaker (r̂ksÞ multiplied by the dialectal target for

the phoneme ðz�vkÞ, plus the mean value for the speaker, plus

error. Equation (16) represents a non-linear regression prob-

lem which cannot be estimated using the ordinary least

squares method outlined above. There are several ways that

this regression could be approached, including nonlinear

regression or alternating least squares, both requiring either

constraints or penalty functions to ensure z�vk remains stan-

dardized in keeping with the spirit of Lobanov normalization.

Alternatively, a multilevel Bayesian approach might be feasi-

ble (Gelman and Hill, 2006). The robustness of a regression

approach to Lobanov normalization in the face of missing

data will depend on the nature of the estimation and the

missing-data pattern. Indeed, in light of difficulties with the

identifiability and convergence of alternating least squares

methods, which involve problems similar to the factoring of

r̂ks and z�vk in Eq. (16), it may prove difficult to find a fully

satisfactory solution (Uschmajew, 2012).

Finally, some normalization methods may not be suited

to reformulation in a regression framework at all. For exam-

ple, Gerstman (1968) normalization expresses formant

508 J. Acoust. Soc. Am. 144 (1), July 2018 Santiago Barreda and Terrance M. Nearey



frequencies relative to the range for each speaker for each

formant. Unfortunately, this procedure involves the estima-

tion of maximum and minimum values for each speaker for

each formant, which are not values that can be easily esti-

mated using a regression framework.

III. EVALUATING NORMALIZATION PERFORMANCE
USING SIMULATED VOWEL DATA

Most previous comparisons of vowel normalization pro-

cedures have focused on the degree to which these methods

minimize some aspect of between-speaker variation (e.g.,

sex differences), and maximize the similarity of normalized

vowel spaces, within dialect (Fabricius et al., 2009; Flynn

and Foulkes, 2011; Adank et al., 2004). Overall, these stud-

ies focus on maximizing metrics relating to the similarity (or

dissimilarity) of vowel systems as a function of the amount

of within-category scatter after normalization. In general,

previous reports indicate that Lobanov normalization exhib-

its superior within-category scatter-reduction in the normal-

ized space, though log-mean normalization is typically not

substantially worse.

According to this general approach, the best normaliza-

tion method would be one that makes the vowel spaces of

different speakers of the same dialect identical in the nor-

malized space. However, the “scatter” in the normalized

space represents subphonemic variation of the very sort that

interests linguistic researchers. Further, repetition error and

legitimate subphonemic variation mean that some amount of

within-category variation will, and should, always be present

in the productions of real speakers. If a normalization

method is to preserve the linguistic facts with respect to

vowel formant data, within-category variation in the normal-

ized space should only be removed when it is phonetically-

irrelevant. As a result, if two vowels appear the same after

normalization they should have the same perceived vowel

quality. If a normalization method makes the productions

and vowel spaces of different speakers more similar than

they ought to be, it is overnormalizing the data in question

leading to a loss of legitimate within-category variation in

vowel quality.

To our knowledge, there are three published compari-

sons of normalization methods that, in addition to scatter

reduction, consider explicitly how well these maintain

impressionistic differences in perceived vowel quality

between speakers (Hindle, 1978; Labov, 1994; Kohn and

Farrington, 2012). Both Hindle and Labov found that

Sankoff (1978) normalization (a method of similar complex-

ity to the Lobanov method, which was not tested) was found

to be more effective than log-mean normalization at reduc-

ing within-category variation in formant patterns, but impor-

tantly, it also removed some of the sociolinguistic variation

in perceived vowel quality between speakers. Kohn and

Farrington (2012) found a very slight advantage for log-

mean over Lobanov normalization in the ability to preserve

perceptually-salient sociolinguistic differences; however,

two issues affect the interpretation of their results. First, the

authors sought to model perceived vowel quality as a func-

tion of normalized formant frequencies but also included

several indexical predictors (e.g., speaker gender, age) in

their models. This would have the effect of inappropriately

controlling for systematic gender and age differences on

vowel quality in the normalized space. Second, the research-

ers used nearly 100 tokens per speaker per time point to

carry out their normalizations. This very large amount of

data is not standard in most research situations and may

reflect a situation where the performance of different nor-

malization methods converge as estimated speaker parame-

ters become increasingly accurate (see Sec. III C). Adank

et al. (2004) address the issue of preserving sociolinguistic

variation less directly in the form of unspecified regional

dialect differences, but in our analysis, the results are

inconclusive.4

There are two potential sources of overnormalization,

which we will refer to as inherent overnormalization and

sampling overnormalization. Inherent overnormalization

occurs when a method controls for variation that is not con-

trolled for (perceptually accommodated) by human listeners.

Overnormalization of this kind is inherent to the structure

and operation of a normalization method and so is likely to

arise whenever the offending method is used. In the long

run, we believe that this is the more pernicious source of

overnormalization. However, it is also the more difficult

type of overnormalization to study as it requires collecting

independent perceptual information about the stimuli. For

that reason, it is typically not considered in investigations

regarding the appropriateness of different normalization

methods for linguistic research.

Sampling overnormalization occurs due to noise in the

estimated speaker parameters used for normalization in real-

world situations. Errors in the estimation of speaker parame-

ters required for normalization will result in artificial shifts

between the vowel systems of different speakers of the same

kind as shown in Fig. 1. However, in the case of error in esti-

mated speaker parameters, these shifts will tend to bias the

vowel spaces of different speakers toward more similarity.

To understand why this is the case we can imagine that,

given a normalization method and a dialect, each speaker

can be associated with a set of true normalization parame-

ters. These parameters reflect the exact distributional charac-

teristics of the formants produced by that speaker given the

structure of the normalization method. However, researchers

do not have access to the true parameters for a given speaker,

and so must estimate these parameters using the same data

that is being normalized. A reliance on estimated parameters

has the effect of making vowel spaces more similar than

they should be by equating estimated parameters between

speakers, rather than true speaker parameters.

For example, consider the case of Lobanov normaliza-

tion for two vowels produced by two speakers. This example

is unrealistically simple, but instructive as to the problem of

sampling overnormalization. Imagine that it were somehow

known that the two speakers produce identical acoustic out-

put except for random production and measurement errors,

and had true Lobanov F2 parameters of l ¼ 1200 Hz and

r ¼ 600 Hz. If speaker A produced two vowel tokens with

F2 values of 600 and 1800 Hz, respectively, they would

appear to have Lobanov F2 parameters of l̂ ¼ 1200 Hz and
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r̂ ¼ 600, which in this case would be correct. Lobanov nor-

malization would make the speaker’s standard deviation

(600) equal to 1 so that the normalized F2 values for the

vowels would equal �1 and 1. In this case the estimated

speaker parameters equal the true speaker parameters so that

the vowels fall on their true positions in the normalized

space. In reality, the estimated and true speaker parameters

will almost never exactly match.

If speaker B produced tokens of the same vowels with

F2’s of 550 and 1850 Hz, they would have apparent

Lobanov F2 parameters of l̂ ¼ 1200 Hz and r̂ ¼ 650 Hz.

However, although the standard deviation parameter has

been overestimated, Lobanov normalization will still make

this speaker’s estimated standard deviation (650) equal to 1,

and the normalized vowels will also have F2 values of �1

and 1. In this case, using the estimated standard deviation to

normalize the productions is artificially equalizing the

peripherality of the vowels produced by speakers A and B,

and leading to incorrect positions in the normalized space

for the vowels produced by speaker B. Had the true Lobanov

parameters been used, the vowels produced by speaker B

would have appeared at �1.08 and 1.08, reflecting the more

peripheral productions of that speaker. Although all normali-

zation methods will exhibit some degree of sampling over-

normalization, situations involving small amounts of data

and normalization methods that use parameters with rela-

tively larger estimation errors are particularly susceptible to

this. Just as with inherent overnormalization, sampling over-

normalization is difficult to investigate quantitatively in typi-

cal situations when researchers only have access to a limited

number of productions from a small group of speakers.

In the remainder of this section we will present an eval-

uation of the Lobanov and log-mean methods using simu-

lated vowel-formant data. The use of simulated data allows

us to consider the performance of these normalization meth-

ods in new ways that are not practical with real speakers. In

most real-world situations researchers only have access to

estimated speaker parameters, usually based on small num-

bers of tokens per speaker. This means that normalization

methods can only be compared in terms of their superficial

performance, without a consideration of sampling overnorm-

alization related to errors in speaker-parameter estimation.

In contrast, the use of synthetic speakers allows us to estab-

lish a ground truth regarding speaker parameters, true vowel

quality, the true amount of scatter reduction that should be

observed in a dataset, and so on. In Sec. III A we discuss

how normalization methods can be compared using simu-

lated data, and then present details about the simulation con-

ditions (Sec. III B). In Sec. III C we investigate errors in the

estimation of the normalization parameters used in Lobanov

and log-mean normalization in different situations. In Sec.

III D we investigate error in the estimation of the true loca-

tions of normalized vowel tokens. These errors are consid-

ered in two ways: errors due to the estimation of

normalization parameters, and errors that are associated with

the use of the “wrong” perceptual model. Finally, in Sec.

III E we compare the scatter reduction observed when using

estimated speaker parameters to true or expected scatter

reduction, the amount of scatter reduction obtained when

normalizing using the true speaker parameters.

A. Investigating overnormalization

Overnormalization by Lobanov and log-mean normali-

zation is investigated below using simulated vowel data

from simulated speakers. We may distinguish models that

are meant to explain between-speaker variation in formant

patterns in production from models that account for how lis-

teners perceptually accommodate to this variation. Although

related, these models are logically distinct and it is not nec-

essary that they exactly correspond. Empirical data regarding

variation in the formant patterns produced by different

speakers suggest that speakers may vary in consistent idio-

syncratic ways that cannot be captured by a single multipli-

cative parameter (see the Appendix). For this reason,

simulated speakers used in this investigation were made to

vary on the basis of the formant-wise means and standard

deviation parameters as used in Lobanov normalization. This

approach means that speakers can vary systematically in

formant-wise location and dispersion in ways that cannot be

equalized by log-mean normalization (but can be with

Lobanov normalization).

The information presented in the Appendix suggests

that between-speaker variability in production may be less

constrained than what is suggested by the constant-ratio

hypothesis (though perhaps not by much), however, it is

not clear to what extent listeners control for this additional

variation in perception. For example, if human listeners are

“Lobanov listeners,” they would estimate and control for

all of the variation in Lobanov parameters between speak-

ers in perception. This means that, for example, listeners

would equate differences in formant-wise vowel-space dis-

persion between speakers and not perceive distinctions due

to vowel space dispersion. On the other hand, despite the

fact that variation in production may involve small system-

atic deviations from the constant-ratio hypothesis, listeners

may still be operating under a perceptual model broadly

consistent with the constant-ratio hypothesis (i.e., humans

are “log-mean listeners”). This would mean that speaker-

dependent deviations from the constant-ratio hypothesis in

production are not normalized away and may be perceptu-

ally salient to human listeners. If this were the case, for

example, differences in formant-wise dispersion between

speakers may very well result in differences in perceived

vowel-quality.

Since inherent overnormalization arises in the event of a

mismatch between the normalization and perceptual models,

it cannot be directly investigated with simulation studies.

Instead we will consider the practical implications of this

type of overnormalization by highlighting differences in

scatter reduction and the apparent perceptual structure of

vowel tokens on the basis of the normalization method

employed. We will also consider sampling overnormaliza-

tion, which can easily be investigated using simulations

since the exact characteristics of the simulated speakers and

repetition error are known.
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B. Simulation of vowel formant data

The generation of naturalistic simulated vowel data is

described in detail in the Appendix. Simulated vowels were

based on the mean locations of the vowel phonemes in the

Hillenbrand et al. (1995) data in a Lobanov-normalized

space. First, 20 simulated speakers were generated, repre-

sented by a set of Lobanov parameters (l̂ks, r̂ks) for F1, F2,

and F3. Then, a random subset of the Hillenbrand vowels

was selected, representing the vowel phonemes of a simu-

lated pseudolanguage. Each language had either five or nine

vowels, and these always contained /i A u/, the “point” vow-

els in the Hillenbrand data. Based on the selected vowel pho-

nemes, the normalized template, and the simulated-speaker

coefficients, a given number of tokens were generated for 20

simulated speakers of the pseudolanguage.

Pseudolanguages were simulated in six different condi-

tions varying according to the number of repetitions and the

number of vowel categories featuring missing data, pre-

sented in Table I. For the conditions with missing data, miss-

ing observations were determined by randomly selecting

between 1 and 14 tokens for each category with missing data

and designating these “missing.” This process was repeated

with independent randomly-selected tokens for each vowel

category with missing data. Ten thousand pseudolanguages

were simulated for each condition, for each vowel-system

size, for a total of 120 000 pseudolanguage datasets.

C. Error in normalization parameter estimates

Sampling overnormalization arises as a result of error in

parameter estimates when based on a limited sample of data.

To investigate errors in parameter estimates for the different

parameters, the true Lobanov parameters for each speaker

from each pseudolanguage dataset were recorded.

Although simulated speakers varied in more ways than

is explainable by a single log-mean parameter, any given

speaker can still be thought of as being associated with a

true log-mean parameter given their exact expected phoneme

targets. A true log-mean parameter for each speaker was cal-

culated by finding phoneme targets for each speaker (in

Hertz) and calculating the speaker log-mean parameter using

Eq. (3). Phoneme targets in Hertz were found for each

speaker using their Lobanov parameters and the dialectal

vowel template (see the Appendix). In addition to the true

parameters for each speaker, Lobanov and log-mean

parameters were estimated from the simulated vowel data

(including error), resulting in parameter estimates that tend

to differ from the true parameters.

The amount of error between estimated and true parame-

ters was quantified in two ways. First, the RMS error between

the true and estimated parameter (in Hertz) was calculated.

Log-mean parameters were exponentiated for all comparisons.

Second, the percent RMS error was calculated by dividing

errors by the value of the true parameter and expressing this

as a percentage. The percent RMS error is intended to give a

clearer picture of error magnitude relative to parameter val-

ues. In addition to error in parameter estimates, the amount of

error in the underlying data (e2) was estimated by finding the

RMS error between the simulated vowel tokens and the exact

phoneme targets for each speaker. In missing data situations,

all data were estimated based on the complete-case data,

meaning all categories with missing data were excluded from

the calculation of the true and estimated parameters. A subset

of these results is presented in Fig. 2.

As seen in Fig. 2, the log-mean parameter has the lowest

percent RMS error in all situations, usually below around

1% of the parameter value. The formant-wise mean parame-

ters used by the Lobanov method feature larger errors, which

is to be expected given that they can only be calculated using

1/3 of the available data for 3-formant data. However, errors

in the formant-wise mean parameters are not substantially

larger than for the log-mean parameter. On the other hand,

the standard deviation parameters used in Lobanov normali-

zation exhibit large errors in all conditions. In fact, this error

is about as large as the underlying repetition error even when

10 repetitions are available for each speaker, and is expected

to be 5%–20% as large as the value of the parameter even

when a full set of nine vowels is available per speaker. This

TABLE I. Information regarding number of repetitions (reps.), vowel-

system sizes, and number of vowel categories with missing data (missing) in

simulated pseudolanguage datasets.

5 vowels 9 vowels

Condition Reps. Missing Reps. Missing

1 10 0 10 0

2 5 0 5 0

3 2 0 2 0

4 1 0 1 0

5 1 1 1 2

6 1 2 1 4

FIG. 2. Highest-density intervals of RMS error (95%) for parameter estimates

(e2 ¼ noise, w¼ log-mean parameter, lk ¼mean for formant k, rk ¼ standard

deviation for formant k) for 9-vowel systems based on 10 repetitions, 1 repeti-

tion, and with 4 missing categories, meaning only 5 tokens were available for

each speaker.
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suggests that log-mean normalization will exhibit very little

type-B overnormalization, while Lobanov normalization

will be associated with moderate to large amounts of type-B

overnormalization even when multiple repetitions are avail-

able for each speaker.

The errors for the standard deviation parameters calcu-

lated for Lobanov normalization may seem unusually large

since these parameters appear to be estimates of the standard

deviation of productions about the mean produced by a

speaker for a formant. However, the formant values pro-

duced by a speaker will be distributed around the means for

their respective vowel categories rather than about the over-

all mean for the speaker. Thus, the standard deviation param-

eters calculated as in Eq. (6) are analogous to the square root

of the expected mean square (EMS) for treatments in a one-

way analysis of variance. The EMS is given by Keppel

[1991, p 94, Eq. (5-3)] as

EMS Að Þ ¼ r2
error þ n �

Xa

i¼1

a2
i

a� 1
: (17)

In Keppel’s example there is one treatment factor A with a
levels and n replicates per level and ai represents the true

(but unknown) value of the ith treatment mean from a true

(but unknown) population mean.

We translate this now into the current framework, where

the single “treatment” is the vowel category V. We take as

the observations in the analysis of variance the sample vowel

means over repetitions (not the raw individual measurements

themselves), so that vi represents the true difference between

the ith vowel mean and the true overall speaker mean. From

the perspective of the analysis of variance, the number of

replicates is 1 and the rerror corresponds to the vowel mean

measurement error svowel, which is equal to repetition error

divided by the square root of the number of tokens used to

calculate the vowel means. The updated expression is pre-

sented in Eq. (18),

EMS Vð Þ ¼ s2
vowel þ 1 �

Xv

i¼1

v2
i

v� 1
: (18)

The relationship expressed in Eq. (18) states that the

EMS of the vowel factor for a formant (i.e., the standard

deviation parameter r̂ks) is equal to the true mean-square

for the factor +ðv2
i =v� 1Þ

� �
, plus s2

vowel. Thus, we can see

that the expected error in this estimator will itself have a

variance of s2
vowel and a standard deviation of svowel, corre-

sponding to a repetition error divided by the square root of

the number of repetitions. This means that the error in the

Lobanov standard deviation parameter estimates is

expected to be quite large in situations with few replicates,

as indicated in Fig. 2.

D. Vowel quality error

Locations in the normalized space are intended to reflect

specific vowel qualities. As a result, error in identifying the

true location of vowel tokens in the normalized space is

equivalent to misidentifying the vowel-quality associated

with a token. In the ideal situation, a researcher is able to

identify the true locations of vowels in the normalized space

such that the structure of normalized tokens closely reflects

their perceptual organization. In practice, there are two

potential sources of error in identifying the correct location

of a token in the normalized space, resulting in error in the

apparent vowel-quality of a token.

First, a researcher may introduce vowel-quality error

into their data because they employ a method that looks for

the wrong target location in the normalized space. Although

thus far our focus has been on overnormalization, we can

consider “misnormalization” more generally. Owing to the

different transformations employed by the two methods con-

sidered here (and different normalization methods more gen-

erally), Lobanov and log-mean normalization assign

different true locations in the normalized space to each

token. Roughly speaking, these target locations correspond

to true perceptual vowel-qualities from the perspective of

two ideal classes of listeners: The true Lobanov targets rep-

resent the perceptual structure of the data according to the

perceptual model adopted by Lobanov normalization (i.e.,

according to Lobanov listeners), while the true log-mean tar-

gets represent the perceptual structure of the tokens accord-

ing to the log-mean perceptual model (i.e., according to log-

mean listeners). As a result, each method “misnormalizes”

the data from the perspective of the perceptual model

implied by the other method. From the perspective of

Lobanov normalization, log-mean normalization misnormal-

izes to the extent that it preserves phonetically-irrelevant

(i.e., imperceptible) variation in formant-wise dispersion in

the normalized space. From the perspective of log-mean nor-

malization, systematic between-speaker variation in formant

means and dispersions may result in perceived phonetic dif-

ferences, and the removal of this variation will constitute

misnormalization (in this case, overnormalization). In sum,

using log-mean normalization when the true perceptual map-

ping is in line with a Lobanov model (and vice versa) will

introduce error in the apparent vowel quality for a set of

tokens, which will remain no matter how much evidence is

available.

Second, vowel-quality error will arise from error in the

estimation of the speaker parameters relevant for normaliza-

tion (related to sampling overnormalization). Given a nor-

malization method and the relevant exact true speaker

parameters, any vowel token can be associated with a target

location in the normalized space that reflects its exact true

vowel quality from the perspective of the model. However, a

researcher does not have access to the true speaker parame-

ters for a speaker and must estimate these from a sample of

tokens. As shown in Sec. III C, there can be substantial error

in the estimated speaker parameters necessary for normaliza-

tion (particularly for the Lobanov standard deviation param-

eters). Error in the speaker parameter estimates will directly

translate into shifts in the vowel spaces of different speakers

of the same general kind as those shown in Fig. 1. This sort

of vowel quality error should decrease as more data are

available for the estimation of the relevant speaker parame-

ters; however, Sec. III C indicates that Lobanov parameters
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can have large errors even in cases when many tokens are

available for every speaker.

We will quantify vowel-quality error by considering the

distance between target locations in the normalized space

(the target vowel-quality) and the estimated location in the

normalized space (the estimated vowel-quality) for vowel

tokens under different conditions. The following process

was carried out for each pseudolanguage dataset. First, vow-

els were normalized using the true speaker parameters using

both Lobanov and log-mean normalization. Recall that the

true speaker parameters were fixed in advance and served as

the basis of all simulations. After this, the log-mean normal-

ized vowels were exponentiated and globally-standardized

within-formant, so that they would represent vowel qualities

in a Lobanov-compatible space. The Lobanov-normalized

vowels were also globally standardized within formant so

that both sets of normalized vowel tokens would have

formant-wise means of zero and standard deviations of one.

These two sets of normalized vowel tokens represent target

locations in the normalized space and associated true vowel

qualities from the perspective of each normalization method.

Each pseudolanguage dataset was also log-mean and

Lobanov normalized using parameters estimated from the

simulated data. Lobanov normalization parameters were esti-

mated using a complete-case analysis, using only tokens

whose categories were present for all speakers. All non-

missing data were then normalized using the complete-case

subset parameters. Log-mean parameters were estimated

using both the complete-case analysis and the regression

approach presented in Sec. II. The log-mean normalized data

based on estimated parameters was exponentiated, and both

the log-mean and Lobanov-normalized data were globally

standardized within-formant, independently for each normal-

ization method. The above process resulted in five sets of

normalized vowels for each pseudolanguage dataset: two

sets of true vowel-qualities (the Lobanov and log-mean tar-

get vowel qualities), and three sets of estimated vowel-

qualities.

To quantify errors, we looked at the data from the per-

spective of each normalization model, effectively consider-

ing tokens from the perspective of each type of ideal listener

(Lobanov and log-mean). For vowel-quality error associated

with sampling overnormalization, we calculated the average

Euclidean distance in the 3-formant space between the esti-

mated vowel-quality for each normalization method and the

true vowel-quality target for that method (e.g., true Lobanov

vs estimated Lobanov). To quantify the vowel-quality error

associated with inherent overnormalization, and misnormali-

zation more generally, we calculated the Euclidean distance

in the 3-formant space between true vowel-quality targets

for log-mean and Lobanov normalization, and the vowel

quality estimates provided by the other method (e.g.,

Lobanov estimates to log-mean targets).

1. Results

Figure 3 presents vowel-quality error for the complete-

case analysis of each normalization method, relative to each

perceptual model. Since data were standardized along each

formant for each model, the average distances in the normal-

ized space are expressed in z-scores. Although this value is

difficult to interpret in an absolute sense, we can compare

the magnitude of vowel quality errors relative to the range of

magnitudes seen under different conditions below.

First, we will discuss the vowel quality errors made by

each normalization method relative to the log-mean vowel-

quality targets (top row of Fig. 3), that is, from the perspec-

tive of a log-mean perceptual model. Sample-based

log-mean normalization is generally accurate in all condi-

tions, producing vowel-quality errors that are reasonably

small even with only a single repetition available per

speaker. Lobanov normalization provides vowel-quality esti-

mates that tend to be quite far from the true log-mean vowel

qualities, always resulting in a larger error than the log-mean

estimates. This indicates that Lobanov normalization pro-

vides an incorrect picture of the vowel qualities associated

with the tokens if humans are log-mean listeners. As noted

above, since this sort of vowel quality error is associated

with inherent overnormalization, increasing numbers of rep-

etitions cannot improve accuracy beyond a certain point,

though decreasing the number of observations does increase

the size of errors.

In contrast to log-mean normalization, the Lobanov

method (bottom row of Fig. 3) is quite sensitive to the

amount of information used to estimate the speaker parame-

ters. Error in vowel-quality estimates by the Lobanov

method relative to Lobanov vowel-quality targets increases

rapidly as the number of observations available for each

speaker decreases. In fact, Lobanov normalization produces

relatively large vowel-quality errors even when there is a

single full set of observations for each speaker. Just as with

Lobanov estimates for log-mean perceptual targets, log-

mean normalization provides poor estimates of the true

Lobanov vowel-quality. However, Lobanov vowel-quality

FIG. 3. Mean vowel quality error in different conditions varying by number of

repetitions (reps.) and number of categories with missing data (missing). Vowel

estimates based on Lobanov (triangle) and log-mean (circle) normalization are

presented for to the log-mean and Lobanov vowel-quality targets. Vertical lines

indicate the complete-case, single repetition condition.
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estimates are so noisy and sensitive to decreases in the

amount of data available that in some cases log-mean esti-

mates of Lobanov vowel-quality targets are nearly as (or

more) accurate as those of Lobanov normalization, even

though the log-mean estimates are attempting to recover dif-

ferent locations in the normalized space (i.e., the log-mean

vowel-quality targets).

a. Advantage for regression estimation in missing-data

situations. The advantage for the regression approach to

log-mean normalization relative to the complete-case

approach was calculated by finding the difference in perfor-

mance for the two methods for each simulation, and then

finding the average across all simulations in each condition.

In general, the advantage for the regression approach to nor-

malization increases with the number of categories that must

be omitted from the analysis due to missing data. For 9-

vowel systems, vowel-quality error was 8% smaller for 2

missing categories, and 19% smaller for 4 missing catego-

ries. For 5-vowel systems, errors were 6% smaller for 1

missing category and 14% smaller for 2 missing categories.

Overall, the use of regression to estimate the log-mean

parameters resulted in smaller errors in 84% of cases, and

this advantage is obtainable “for free” simply by adopting an

alternative parameter estimation method.

E. Scatter reduction

In order to investigate scatter-reduction relative to over-

normalization, the following process was carried out for

each pseudolanguage dataset across each condition and

vowel-system size. First, the data were normalized using the

Lobanov and log-mean methods using the true speaker

parameters for each speaker. A multivariate analysis of vari-

ance was carried out on each set of normalized formant val-

ues with vowel category as the only predictor, and the Pillai

score was recorded for each normalization method. A higher

Pillai score indicates that there is less within-category varia-

tion relative to between-category variation in a dataset, indi-

cating more-similar normalized vowel spaces for the

speakers in the dataset. In addition, the speaker parameters

necessary for Lobanov and log-mean normalization were

also estimated from the simulated data. In missing-data sit-

uations, Lobanov parameters were estimated using a

complete-case analysis. Log-mean parameters were esti-

mated in two ways: using a complete-case analysis and using

the regression approach outlined in Sec. II. This process

resulted in five sets of Pillai scores for each pseudolanguage:

two sets of true scores (log-mean and Lobanov), a score for

Lobanov normalization with estimated parameters, and two

scores for log-mean normalization based on the complete-

case and regression parameter estimates.

The Pillai score observed when a normalization method

uses the true speaker parameters (i.e., the true Pillai score)

represents the desired amount of scatter reduction for the

data in question. When a normalization method is applied

using the exact true parameters for a given speaker, it has no

basis by which to appropriately eliminate further

phonetically-irrelevant variation from a dataset. As a result,

although in general a higher Pillai score is more desirable,

an observed Pillai score higher than the true Pillai score indi-

cates that too much variation has been removed from the

data so that (sampling) overnormalization has occurred.

1. Results

The distribution of mean Pillai scores for the complete-

case estimations of each normalization method across condi-

tions is presented in Fig. 4, which shows the same general

pattern for 5- and 9-vowel systems. First, Pillai scores are

higher for Lobanov normalization, which is in line with previ-

ous reports that Lobanov normalization is the more successful

method with respect to scatter reduction in the normalized

space. Second, Lobanov and log-mean normalization show

different patterns of overnormalization as a function of the

amount of data available to estimate the speaker parameters.

Log-mean normalization generally shows a close alignment

between observed and true Pillai scores across all of the con-

ditions tested. This indicates that log-mean normalization

tends to remove an appropriate amount of variation when

relying on estimated speaker parameters.

In contrast, the Pillai scores for the Lobanov method

show more variation as a function of the amount of data

available to the algorithm. Consider the performance of the

Lobanov method in the case of one repetition per category,

with no missing data. As can be seen in Fig. 4, this condition

results in substantially higher Pillai scores relative to when

the true speaker parameters are used to normalize. This indi-

cates that in these situations, vowel data are being overnor-

malized and legitimate variation in vowel quality is being

removed from the data. The fact that Pillai scores decrease

as the number of repetitions increase suggests that the over-

normalization of data seen in the single-repetition condition

is related to error in the estimation of Lobanov parameters

from small amounts of data (sampling overnormalization).

As the number of observations increase, error in speaker

parameters decreases resulting in a reduction in the amount

FIG. 4. Average Pillai scores for each condition using Lobanov (triangles)

and log-mean (circles) normalization. Conditions differ in number of repeti-

tions (reps.) and number of categories with missing data (missing). Points

joined by lines indicate average Pillai scores based on estimated parameters,

points indicate average true Pillai scores. Vertical lines indicate the

complete-case, single repetition condition.
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of scatter reduction (and overnormalization) produced by the

Lobanov method. The reduction in Pillai scores in the

missing-data conditions may appear to indicate the perfor-

mance of Lobanov normalization is improving in these situa-

tions. However, these conditions involve fewer tokens and

are associated with noisier parameter estimates (see Sec.

III C). Thus, the decrease in Pillai scores in these situations

likely reflects the fact that in missing-data conditions where

parameters are estimated based on a complete-case analysis,

parameter estimates were determined using a subset of the

available data and so are only overfit with respect to some of

the tokens produced by each speaker.

a. Advantage for regression in missing-data

situations. The regression approach to estimation of the

speaker parameters again resulted in a modest but consistent

improvement relative to the complete-case approach. For 9-

vowel systems, the average amount of overnormalization

(measured by subtracting the observed Pillai score from the

true Pillai score) in the missing-data conditions was 0.0039

for the complete case analysis as compared to 0.0007 for the

regression analysis, representing a decrease of 87% in this

value. Both of these values compare quite favorably to the

average overnormalization of 0.029 when using the Lobanov

method in complete-case situations with a single repetition

per speaker. For 5-vowel systems, overnormalization

decreases from 0.0125 to 0.0087, a decrease of 86%. Again,

both of these values compare favorably to the 0.072 over-

normalization by Lobanov in single-repetition complete-case

situations for a 5-vowel system. Overall, overnormalization

was reduced at least somewhat in 84% of missing-data cases

when speaker parameters were estimated using the regres-

sion approach rather than the complete-case analysis.

F. General discussion

Examples of vowel quality errors for each normalization

method relative to their own vowel-quality targets are given

in Figs. 5(a) and 5(b). As can be seen, the average magnitude

of the vowel-quality errors with Lobanov normalization are

large enough to meaningfully affect the apparent vowel qual-

ity associated with many tokens, while those of the log-mean

method tend to be quite small. The error magnitudes shown in

Figs. 5(a) and 5(b) are typical for log-mean and Lobanov nor-

malization with a complete set of nine observations per

speaker, suggesting that researchers using the Lobanov

method in many typical research situations run a high risk of

introducing significant vowel-quality error into their data. The

substantial difference in vowel-quality errors can be directly

attributable to the large errors in the standard deviation param-

eters used for Lobanov normalization presented in Sec. III C.

Figure 5(c) shows the difference between log-mean and

Lobanov vowel-quality targets for the same vowel tokens,

arising as a result of the different operations carried out by the

two normalization methods. Clearly, these perceptual targets

(and the overarching perceptual organization of the tokens)

cannot both be right: one is likely to correspond more closely

to the true perceptual organization of the tokens in the opinion

of human listeners. Using a normalization method that does

not reflect the perceptual processes of human listeners will

thus result in the wrong targets in the normalized space,

potentially leading to large errors in apparent vowel quality

relative to the true quality of each token.

The above highlights that the selection of a normaliza-

tion method has practical consequences for the ability to

make reliable inferences regarding patterns in vowel-quality

between and within-speakers. The selection of a normaliza-

tion method will determine the apparent structure of the data

so that committing to a method necessarily means commit-

ting to a position regarding the perceptual organization of

the tokens. In light of this, the selection of a normalization

method cannot be viewed simply as a methodological tool

without any theoretical implications. If a researcher uses a

normalization method that suggests an inappropriate percep-

tual mapping, this may result in substantial errors in the

apparent vowel quality associated with individual tokens.

Although the true nature of the human perceptual space is

not exactly known, we have reason to believe that it is

broadly consistent with the assumptions underlying single-

parameter log-mean normalization (see Secs. I B 1 and

I C 1). Conversely, and perhaps more importantly, we know

of no reason to believe that the range of variation in formant

patterns allowed by Lobanov normalization is consistent

with the tolerated range of phonetically-equivalent sounds in

the opinion of human listeners.

In addition to its theoretical and empirical support as a

model of human vowel perception, log-mean normalization is

very resistant to changes in the amount of information available

to the method, and resulted in low overnormalization and small

vowel-quality and parameter-estimation errors in all conditions.

The regression approach to estimation of the log-mean parame-

ter leads to modest but consistent reductions in overnormaliza-

tion and vowel quality error in missing-data situations relative

to the complete-case analysis. Because of the ease of imple-

menting this method and the expected improvement in perfor-

mance, it seems prudent to carry out log-mean normalization

using the approach outlined in Sec. II in missing-data situations.

As with previously-reported findings, Lobanov normali-

zation resulted in greater scatter-reduction across most condi-

tions tested here. The increased scatter-reduction within

category is evident when comparing the distribution of tokens

in Figs. 5(a) and 5(b). However, the increased Pillai scores

can be directly attributed to the independent dispersion param-

eters estimated for each formant as opposed to the more

restricted dispersion reduction carried out by the log-mean

method. To the extent that log-mean normalization is a more

accurate reflection of the true perceptual organization, most of

the increase in scatter-reduction seen for Lobanov normaliza-

tion represents the removal of legitimate linguistic variation

(inherent overnormalization) and is therefore undesirable.

In addition, Lobanov normalization has a tendency to

overnormalize vowels due to noisy parameters when small

numbers of repetitions are available for each speaker, a situ-

ation which is common in many research situations. The ten-

dency of Lobanov normalization to exhibit sampling

overnormalization is evident in Fig. 5(b) where the true

vowel qualities (empty points) are more dispersed than the

estimated vowel qualities (filled points). Overall, it seems
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that even if one adopts the Lobanov model of vowel percep-

tion and desires a normalization that equalizes for formant-

wise dispersion, in practice, the large errors in the Lobanov

standard deviation parameters will tend to result in over-

normalization of data and large errors in apparent vowel-

quality. As a result, it seems prudent to reserve use of the

Lobanov method for situations when multiple repetition of

complete vowel inventories are available for each speaker.

IV. CONCLUSION

This article presents a readily-applicable generalization

of the log-mean normalization method that avoids certain

obvious kinds of bias in the face of missing and unbalanced

data. This approach shares the same important assumptions

made by traditional log-mean normalization, namely, that the

formant patterns produced by speakers of the same dialect dif-

fer from each other on the basis of a speaker-dependent scal-

ing factor and repetition error. This regression-based approach

provides more accurate estimates of the vowel quality associ-

ated with each token, and is less prone to overnormalization

in missing-data situations.

In addition, we have argued that the selection of a nor-

malization method for use in linguistic research cannot sim-

ply be treated as a methodological issue: if a normalization

method is to accurately reflect the linguistic structure of a set

of vowel tokens it must correspond, in process or outcome,

to the mechanisms of human vowel perception. On this

approach, there are several reasons to be skeptical of the nor-

malized vowel qualities recovered by the Lobanov method.

First, to our knowledge no current theory of vowel percep-

tion is compatible with the Lobanov model, and no

researcher is advocating for its plausibility. The estimation

of location and dispersion parameters for each formant for

each speaker likely represents an intractable problem for the

listener when only a limited amount of information is avail-

able for that speaker. In fact, Lobanov normalization

includes large errors in apparent vowel-quality and over-

normalizes data substantially even in cases where a full

vowel inventory is available for a speaker. Second, it is not

clear that variation in formant dispersion is phonetically-

irrelevant in all situations, a precondition that must be satis-

fied for Lobanov normalization to not remove linguistically

meaningful variation from formant patterns. As a result,

Lobanov normalization may be prone to committing both

inherent and sampling overnormalization.

Although the use of log-mean normalization has a good

amount of empirical and theoretical support (see Sec. I B 1),

further research is needed to understand the nature of the

speaker-dependent normalized space. Furthermore, we sug-

gest that the consideration of vowel normalization methods as

models of human vowel perception can help guide the evalua-

tion and consideration of methods that reflect the linguistic

facts reflected in vowel formant data, rather than seeking to

maximize metrics not directly related to human speech per-

ception. Finally, we readily acknowledge the need for more

direct perceptual testing of alternative “normalizable” vowel

spaces. This approach may prove to be difficult for a number

of reasons, including the fact that detailed perceptual judg-

ments are relatively difficult to obtain and that they may be

quite variable compared to often relatively small differences

in predicted phonetic quality provided by alternate normaliza-

tion models. We nonetheless think it is necessary for solid

refinement of the theories involved, and for the selection of

normalization methods that lead to reliable inferences regard-

ing patterns in vowel-quality between and within speakers.

APPENDIX: SIMULATING NATURALISTIC VOWEL
DATA

The generation of simulated vowel data requires that

three aspects of variation in formant patterns be specified:

(1) between-phoneme variation, (2) random within-speaker,

within-phoneme variability, and (3) systematic between-

speaker variation. Each of these aspects will be outlined for

the simulation method used for the results in Sec. III.

1. Between-vowel variation

The dialectal template specifies the ideal locations of

each phoneme of the dialect in a normalized space, repre-

senting the phonetic information shared by all speakers in

the dialect. For the data used in Sec. III, the dialectal

FIG. 5. (a) True (empty points) and estimated (filled points) vowel qualities for log-mean normalization relative to the log-mean perceptual model. Data from

a single vowel category from a 9-vowel pseudolanguage is presented. (b) True (empty triangles) and estimated (filled triangles) vowel qualities for Lobanov

normalization relative to the Lobanov perceptual model, for the same data in (a). (c) True vowel quality according to the log-mean (circle) and Lobanov (trian-

gle) perceptual models, for the same data in (a) and (c).
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template was established using the vowels produced by the

98 speakers in the Hillenbrand et al. (1995) dataset will a

full set of F1, F2, and F3 steady-state measurements for all

12 vowels. The dialectal template was established by

Lobanov normalizing all formant frequencies in a dataset

and finding the average normalized F1, F2, and F3 value for

each vowel. These mean values were then standardized

along each formant, resulting in the mean dialectal targets

specified in a Lobanov-normalized space.

Given a dialectal template specified in the Lobanov-

normalized space, the phoneme targets for a specific speaker

in Hertz can be obtained by “unnormalizing” the dialect tem-

plate values, shown in Eq. (A1),

Fvks ¼ ðz�vk � r̂ksÞ þ l̂ks: (A1)

This process is the inverse of Lobanov normalization and

generates Hertz-valued formant frequencies (FvksÞ based on

the dialectal reference value for vowel v and formant k (z�vk),

and a speaker-specific mean and standard deviation parame-

ter for that formant (l̂ks; r̂ks).

2. Random within-speaker within-phoneme variability

Within-phoneme, within-speaker variability in formant

patterns was investigated using the North Texas Vowel

Database (Assmann and Katz, 2000), which appears to be

the only publicly available dataset of formant values that

includes several repetitions of the same word by multiple

speakers in controlled conditions. This data will be used to

establish the characteristics of the repetition error that will

be added to the phoneme targets for simulated speakers in

the Hertz space.

The North Texas data include 12 vowels produced by

20 adult speakers, 10 males and 10 females. The data are

highly unbalanced with different numbers of repetitions for

each category for each speaker (between 0 and 14), includ-

ing missing categories for several speakers. For each

speaker, we included only those categories that had at least

five repetitions. The mean and standard deviation for each

formant, for each vowel, for each speaker were found, result-

ing in three mean and standard deviation measurements for

each vowel produced by each speaker. The standard devia-

tion values provide estimates of the repetition error associ-

ated with each average formant value.

A visual inspection of the relationship between formant

standard deviations and formant means revealed that this

relationship was non-linear, and also showed an increasing

standard error as mean formant increased. To address both

of these issues, we modeled the logarithm of the standard

deviation of a formant as a function of the logarithm of the

mean of that formant. We considered three models, one fea-

turing only mean formant frequency as a predictor, a second

that included additional predictors related to each speaker,

and a third that also included predictors relating to the vowel

category associated with the measurement. The model with

only an intercept and formant frequency as a predictor

explained 57% of the variance in the standard deviations of

formant frequencies. The addition of speaker predictors

increased this to only 59% despite the addition of 19 parame-

ters to the model. The inclusion of vowel predictors only

increased the variance explained to 61% despite adding a

further 11 degrees of freedom to the model. As a result,

although there may well be systematic variation in error

magnitudes according to speaker (and perhaps vowel), for

our purposes it seems reasonable to model this variation

solely on the basis of the mean formant associated with the

vowel as this more restricted model captures a large amount

of the variance with only a single predictor.

Error was created by drawing from a normal distribution

with a standard deviation was equal to r ¼ 0:423� F0:662,

where F is equal to the Hertz value of the phoneme target for

that speaker. The error was then added to the Hertz value of

the phoneme target for that speaker such that no production

for any given speaker will be expected to exactly equal their

phoneme target. An example of the sort of error generated

by this model is presented in Fig. 6. It should be noted that

the Assmann and Katz data features more variability in the

magnitude of error expected for a given formant frequency

but, on average, the magnitude of errors predicted by this

model is in line with that seen in natural productions.

3. Systematic between-speaker variation

Generating simulated speakers was done by generating

vectors of Lobanov parameters that conformed to the covari-

ance patterns of these parameters in real speakers. On

account of the relationships between the size of a resonator,

formant outputs, and vowel-space dispersion outlined in Sec.

I C 1, it is expected that there will be a strong positive corre-

lation between the mean frequencies of each formant, and

between mean FFs and measures of formant dispersion (e.g.,

formant standard deviation). In fact, if speakers varied

exactly according to a single multiplicative scaling-

parameter (as suggested by the constant-ratio hypothesis)

then all of the Lobanov parameters would be perfectly corre-

lated with each other since a proportional increase to one

formant would result in equal proportional increases to all

formants (and their standard deviations). To investigate the

FIG. 6. A comparison of (a) repetition error observed in the Assmann and

Katz (2001) data, and (b) simulated repetition error for the same mean for-

mant frequencies and number of observations as the Assmann and Katz

data. Lines in both panels show the relationship between formant means and

standard deviation used by the model.
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empirical relationship between the Lobanov parameters

across speakers, we found the mean and standard deviation

for the first three formants for the speakers with complete

data from the Hillenbrand et al. vowels. The correlations

between the six calculated Lobanov parameters for these

speakers are presented in Table II.

As seen in Table II, there are very high correlations

between the formant-wise mean parameters and moderate to

high correlations between the mean and standard deviation

parameters for each formant and among the standard devia-

tion parameters for each formant. Given that these correla-

tions are being estimated, including repetition and

measurement error, which can be quite large (see Sec. III C),

the true correlations between these parameters are likely to

be higher. To investigate the amount of independence in

these parameters, the mean and standard deviation coeffi-

cients were standardized within-formant. A principal compo-

nents analysis carried out on the standardized mean

parameters indicates that 95% of the variance in these

parameters falls along a single dimension. A similar analysis

carried out on the standard deviation parameters indicates

that 74% of the variance in these parameters falls along a

single dimension. So, while the relationships between these

parameters are not perfect, they are not as independent as

they might be given the lack of constraint in variation of

these parameters implicit in Lobanov normalization.

In order to create speakers that varied in accordance

with the patterns seen in Table II, we found the average

mean and standard deviation for each for the first three for-

mants across all the Hillenbrand et al. speakers with com-

plete data. This vector served as the starting point for all the

simulated speakers. The overall mean speaker vector was

log transformed to make new speakers so that the variability

added would be proportional to the values of the parameters

(equivalent to adding log-normal noise in the Hertz space).

New speakers were generated by adding four distinct kinds

of noise representing idiosyncratic but consistent between-

speaker variation. The magnitude of each independent

source of error was determined heuristically so that the cor-

relations between the Lobanov parameters would be in line

with empirical correlations after the addition of noise.

Interpretation of the errors added at this stage is facilitated

by the fact that for small values (<0.2), logarithmic changes

are close to proportional changes. For example, an increase

of 0.1 log-Hz corresponds to an increase of approximately

10% in formant frequencies [exp(0.1)¼ 1.105].

First, a random variable with a mean of 0 and a standard

deviation of 0.1 was drawn and added to the parameter vec-

tor. This represented differences between speakers that arise

primarily from differences in vocal-tract length and is varia-

tion in strict accordance with the constant-ratio hypothesis.

This resulted in unimodal variation in the average formant

frequencies produced by simulated speakers, whereas varia-

tion in real speakers is multimodal with modes for adult

males, adult females, and pre-pubescent children. However,

this simplification should not have any effect on the perfor-

mance of the normalization methods being considered here.

Second, a random variable was drawn with a mean of 0

and a standard deviation of 0.07 and added to all the standard

deviation parameters. This allows for the overall vowel space

dispersion to vary independently of the overall mean formants

produced by the speaker. Third, three draws were taken from

a normal distribution with mean 0 and standard deviation of

0.03. These values were centered and added to the mean

parameters. These values allowed for formant means to vary

independently of each other, and independently of their stan-

dard deviations. Finally, another three draws were taken from

a normal distribution with a mean of 0 and a standard devia-

tion of 0.07. These values were centered about zero and added

to the standard deviation parameters. These values allowed

the standard deviation for each formant to vary independently

of each other, and of their respective formant mean.

To investigate the appropriateness of these values, the

following verification was carried out. We generated 98 sim-

ulated speakers (the same n as the complete-case

Hillenbrand dataset), generated a single repetition of each

vowel, and added repetition error as outlined in section 2 of

this appendix. After this, the Lobanov parameters for each

speaker were calculated and recorded. This process was

repeated 10 000 times resulting in a distribution of Lobanov

parameter correlations for simulated datasets of the same

size as the empirical Hillenbrand et al. data. These distribu-

tions are compared to the empirical correlations in Fig. 7,

showing that the between-speaker variability generated by

our simulations corresponds well to empirical estimates.

TABLE II. Correlations between Lobanov parameters for the speakers in

the Hillenbrand et al. (1995) data with a full set of steady-state observations.

l1

l2 0.91 l2

l3 0.91 0.94 l3

r1 0.75 0.68 0.72 r1

r2 0.68 0.66 0.70 0.72 r2

r3 0.54 0.6 0.61 0.49 0.60 r3

FIG. 7. Highest-density intervals of the correlations of Lobanov parameters

for simulated speakers. Circles indicate the empirical correlations between

parameters in the Hillenbrand et al. (1995) data.
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1Using log-transformed formant frequencies also offer additional advan-

tages, such as more nearly homogeneous variances for speaker groups

within vowel within formant (Nearey, 1978, 1992).
2The normalization method used in the Atlas of North American English

(Labov et al., 2005, p. 39) is sometimes referred to as Labov or ANAE

normalization. This normalization method is an implementation of single-

parameter log-mean normalization with two small differences relative to

the variant outlined in Sec. I B. First, rather than setting all �G to 0, the �G’s

are set to equal some pre-determined reference �G. In the Atlas of North

American English, the reference �G was set to the mean �G for 345 speakers

in the Telsur corpus: 989 Hz (6.897 log-Hz). Second, vowel spaces are

normalized directly in Hertz by multiplying formant frequencies by a scale

factor, rather than by subtracting in log-Hertz. These differences result in

normalized formant values that have realistic Hertz values for an adult

speaker, rather than the somewhat opaque values provided by log-mean

normalization.
3The extra term CfVg is at the heart of the problem noted by Disner (1980).

In cases of generally similar cross-language or cross listener comparisons,

where a limited number of formant-vowel combinations are suspected of

important pattern differences, the unmodeled “wobble” in CfVg may not

be too distorting, since �Gs estimates depend on many vowels and all for-

mants. Alternatively, a small number of suspicious vowel-formants could

be left out of the calculations of �Gs to avoid possible artefacts. Finally, if

additional assumptions can be made about (roughly speaking) the relation

of average vocal-tract lengths of the samples of speakers in the language

pairs under consideration, the method outlined by Morrison and Nearey

(2006) might be beneficial.
4Adank et al. (2004) attempt to assess indirectly how well “sociolinguistic

variation” is preserved using a factorial multivariate analysis of variance

involving regional differences as a factor. We find this analysis inferior to

the Hindle study for three reasons. First, unlike in Hindle’s case, there is

no independent evidence (in the form of impressionistic judgments) of

specific vowel quality differences for a specific categories. Second, unlike

Hindle, Adank et al. did not include a correct implementation of single-

parameter log-mean normalization (which they call “Nearey2”) in the

analysis as they erroneously included f0 in the calculations of the parame-

ter even though this parameter was only intended to include information

related to formant (resonant) frequencies. As a result, only the results pre-

sented regarding their “Nearey1” formant-wise log-mean normalization

(using an independent log-mean parameter for each formant) are interpret-

able. Third, Adank et al. chose a complex analysis technique, factorial

multivariate analysis of variance to assess an unspecified difference in dia-

lect patterns. Adank et al. conclude that Lobanov normalization is better

than formant-wise log-mean normalization at preserving assumed dialect-

related differences on the basis of the relative size of the eta-squared statis-

tic of one selected interaction. However, Adank et al. look for preservation

of regional differences in normalized data as indexed by the g2 value for

the Vowel-by-Region interaction effect, which the authors take as the only

effect probative of dialect differences. Considering only the three formant

case, Lobanov, Gerstman, and Nearey normalizations come out in the top

3 in that order on that criterion. However, this analysis ignores the main

effect for Region, because “…it seems likely that large [main] effects for

Region would only be found if the size and shape of the entire vowel sys-

tem varies across regions” (p. 3104). However, they ignore the well-

known caveat that main-effects and interactions can be interpreted sepa-

rately only in very specific circumstances. Without a more compelling rea-

son to the contrary, we believe the combined contributions of Region and

Region-by-Vowel are more indicative of regional differences in vowel

systems. Unfortunately the eta-square values for neither Lobanov nor

Gerstman normalization are reported as those effects did not reach signifi-

cance and were filtered out of their Table V, and so no definitive compari-

son is possible from the published article. On the basis of the published

information, however, there is no reason to believe that “Nearey1” (for-

mant-wise log-mean normalization) performs any worse at distinguishing

dialects than the other two normalization methods.
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