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a b s t r a c t 

We consider multi-class classification models built from complete sets of pairwise binary classifiers. The 

Bradley –Terry model is often used to estimate posterior distributions in this setting. We introduce the 

notion of Bayes covariance, which holds if the multi-class classifier respects multiplicative group action 

on class priors. As a consequence, a Bayes covariant method yields the same result whether new priors 

are considered before or after combination of the individual classifiers, which has several practical ad- 

vantages for systems with feedback. In the paper , we construct a Bayes covariant combining method and 

compare it with previously published methods in both Monte Carlo simulations as well as on a practical 

speech frame recognition task. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

Statistical and machine-learning classification methods have

ound widespread applications in industry, as well as in scientific

esearch. Successful applications include optical character recog-

ition [1] , speech recognition systems [2] , automated medical di-

gnoses [3] and credit-risk scoring [4] . Although in some practi-

al applications binary decisions may be sufficient (e.g. cancer/no

ancer decision), most applications require correct classification

mong multiple classes. 

Broadly speaking, multi-class classification will pose a more

hallenging problem than binary classification. One reason for this

s that the set of boundaries among multiple classes may be more

omplex and thus may be harder to learn than the boundary be-

ween two classes. Another reason is that several powerful ma-

hine learning methods for classification of two classes have no

irect analogues for multiple classes, making these methods inap-

licable for those faced with a multi-class problem. Important ex-

mples of such methods include support vector machines [5,6] and

daboost [7] . 

There are many ways to reduce the multi-class classification of

 classes to binary classification subproblems. One common ap-

roach is one-vs-all classification when one trains K classifiers to

istinguish each class from all of the rest [8] . Another common
� This paper has been recommended for acceptance by Maria De Marsico. 
∗ Corresponding author at : University of Žilina, Žilina, Slovakia. F ax: +421 

15134312. 

E-mail address: ondrej.such@fri.uniza.sk , ondrej.such@gmail.com (O. Šuch). 

t  46 

fi  47 

t  48 

d  49 

a  50 

p  51 

ttp://dx.doi.org/10.1016/j.patrec.2016.08.014 

167-8655/© 2016 Published by Elsevier B.V. 

Please cite this article as: O. Šuch, S. Barreda, Bayes covariant 

http://dx.doi.org/10.1016/j.patrec.2016.08.014 
pproach is all-vs-all when one trains 
(

K 
2 

)
pairwise classifiers [9] .

ther approaches have been proposed based on error correcting

oding theory [10–14] and on training statistical meta-classifiers

15] . 

In our work , we consider the question of combining the out-

ut of binary classifiers in an all-vs-all setting. Some reasons to

onsider this approach rather than the one-vs-all approach [8] in-

lude: 

• larger number of parameters allow for more powerful models, 
• simpler and faster training of individual classifiers compared to

one-vs-all ( [8, pp. 123–124] ), 
• when samples are densely packed in Euclidean space, the all-

vs-all boundaries should be simpler, and thus easier to learn

than one-vs-all boundaries; for example English vowels lie es-

sentially in a 2-dimensional space [16] , 
• larger number of binary models allows for some tolerance of

imprecision of individual classifiers ( [17] , [8, p. 102] , [18] ). Im-

precise computation is typical for neuromorphic circuits for

classification problems, which on the other hand are highly par-

allel and highly energy efficient [19,20] . 

Bayes theorem provides a rigorous foundation of classification.

he theorem explains the crucial role played by class priors on

he outcome of classification (cf. (2) ). Usually, class priors are a

xed quantity during classification. However, in multi-tiered sys-

ems with feedback, one may desire to reevaluate evidence with

ifferent priors based on feedback from other tiers. For instance,

 typical automated speech recognition system consists of three

arts – an acoustic model, a lexicon and a language model [21] .
multi-class classification, Pattern Recognition Letters (2016), 
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Solving r ′ 
12 

= r ′ 
23 

= r ′ 
31 

results in: 

 

3 = 

( 1 
r 23 

− 1)( 1 
r 31 

− 1) 

( 1 
r 12 

− 1) 2 
, B 

3 = 

( 1 
r 31 

− 1) 2 

( 1 
r 12 

− 1)( 1 
r 23 

− 1) 
. (15) 

rom (9) and (11) we conclude that the posterior of the Bayes co-

ariant method M must be: 

(R ) = 

1 

1 + 1 /A + 1 /B 

( 1 , 1 
A 
, 1 

B 
) . (16) 

q s . (15) and (16) define M uniquely. The resulting combining

ethod is clearly 3-symmetric and it remains to check for Bayes

ovariance. Let s > 0 be another reweighing vector. Then for R 

s =
(r ′′ 

i j 
) we have: 

s 2 
s 1 

(
1 

r 12 

− 1 

)
= 

1 

r ′′ 
12 

− 1 (17) 

s 1 
s 3 

(
1 

r 31 

− 1 

)
= 

1 

r ′′ 
31 

− 1 (18) 

s 3 
s 2 

(
1 

r 23 

− 1 

)
= 

1 

r ′′ 
23 

− 1 . (19) 

t follows that: 

 

s 1 
s 2 

(
1 

r ′′ 
12 

− 1 

)
= 

s 3 
s 1 B 

(
1 

r ′′ 
31 

− 1 

)
= 

s 2 
s 3 

B 

A 

(
1 

r ′′ 
23 

− 1 

)
(20) 

nd thus: 

(R 

s ) ∝ 

(
1 , 

s 2 
As 1 

, 
s 3 

s 1 B 

)
∝ 

(
s 1 , 

s 2 
A 

, 
s 3 
B 

)
. (21) 

This concludes verification of Bayes covariance and the proof of

he theorem. �

. A general Bayes covariant combining method 

We will now construct Bayes covariant classifiers for cases with

ore than three categories ( K > 3). Consider the moduli F of all

easible matrices. Inside F there is a submanifold B of feasible ma-

rices for which (3) is a consistent system, which we shall call

he Bradley –Terry manifold . Let us denote by P the point on the

radley –Terry manifold corresponding to r i j = 1 / 2 for i � = j. We

ill consider only methods M for which 

(P ) = 

(
1 

K 

, 1 
K 
, . . . 

)
. (22) 

here is a natural action of the group G of reweighing vectors

 > 0 on F given by (6) . Since the action is simply transitive on the

radley –Terry manifold B , it follows from (9) that a Bayes covariant

ethod is uniquely determined on the Bradley –Terry manifold. 

Going back to proof of Theorem 1 , we see that we took ad-

antage of a set S of matrices satisfying (10) . The set contained a

ingle representative of each orbit under the action of reweighing

ectors on F and by 3-symmetry we knew the exact value of the

ombining method on S . 

In general, one may desire S to be a manifold of codimension

 − 1 inside the variety of all feasible matrices and prescribe that 

(s ) = 

(
1 

K 

, 1 
K 
, . . . 

)
for s ∈ S . (23) 

f we express any feasible point f ∈ F as f = s q for reweighting vec-

or q > 0 and s ∈ S , we will have from (9) : 

( f ) ∝ q . (24) 

ince the group of reweighing vectors G acts transitively on the

radley –Terry manifold, S has to have a single point intersection

ith the Bradley –Terry manifold. To arrive at easily computable
Please cite this article as: O. Šuch, S. Barreda, Bayes covariant 
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xpressions, we propose to take for S the set of points Q such that

P is orthogonal to the tangent space of the Bradley –Terry man-

fold at the point P . This set is dependent on paramet e rization of

he variety of feasible matrices, and may not contain a single rep-

esentative of each orbit. Since we propose a linearly defined set

 , it is natural to consider a paramet e rization in which the group

ction is linear. 

heorem 2. There exists a Bayes covariant combining method for ev-

ry K ≥ 3 . 

roof. Consider paramet e rization of F given by s i j = log ( 1 
r i j 

− 1)

or 1 ≤ i < j ≤ K . From (6) we have for the action of q =
(q 1 , q 2 , . . . , q K ) : 

 

q 
i j 

= s i j + log q j − log q i (25) 

hus in paramet e rization by s ij , the group of reweighing vectors

cts via translations. Note that since s ij is a function of r ij only, any

ymmetry properties of pairwise matrix R are preserved in passing

o s ij coordinates. Moreover, in s ij coordinates: 

• the set of feasible matrices is the 
(

K 
2 

)
dimensional real vector

space, 
• point P is just the origin of the vector space. 

For i ≤ K consider the one-parameter subgroup G i of G

aramet e rized as: 

 = ( 

i −1 ︷ ︸︸ ︷ 
1 , 1 , . . . , q, 1 , 1 , . . . ) (26) 

et h = (h 1 , h 2 ) be a bijective mapping of the set { 1 , 2 , . . . , (K 
2 

)}
nto the set of pairs {( i , j ) | 1 ≤ i < j ≤ K }. Such a function induces

rdering of coordinates s ij , which will allow us to express tangent

ectors to the Bradley –Terry manifold at P . Namely, for m ≤
(

K 
2 

)
the

 th component of the tangent vector m k to P along the action of

 k is given by 

(m k ) m 

= 

{ −1 if h 1 (m ) = k 
1 if h 2 ( m ) = k 
0 otherwise 

(27) 

ubgroups G i generate G and therefore vectors m k generate the

angent space of the Bradley –Terry manifold at P . However vectors

 k are not linearly independent, because the action of q and c · q

s the same. Omitting one of the vectors, say m 1 , from m i we ar-

ive at an explicit basis M = (m 2 , m 3 , . . . , m K ) of the tangent space

f the Bradley –Terry manifold. 

All that remains at this point is to solve the normal equations.

et N be a basis of the orthogonal complement to the tangent

pace, and let s represent a feasible matrix. We have: 

 = Mu + Nv (28) 

 

′ s = M 

′ Mu + (M 

′ N ) v = M 

′ Mu (29) 

(M 

′ M ) −1 M 

′ s = u (30) 

f we write u 

′ = (u 1 , . . . , u K−1 ) , then by (25), (24) and (28) the pro-

osed Bayes covariant combining method is given by: 

ˆ p i = 

exp (u i −1 ) ∑ K 
i =1 exp (u i −1 ) 

, where u 0 = 0 . (31) 

Finally, note the special form of M 

′ M . From (27) it follows that

t has (K − 1) on the diagonal and −1 elsewhere, which means it

quals K · I − jj ′ , where j = (1 , 1 , . . . ) ′ . Therefore: 

(M 

′ M ) −1 = 

1 

K 

(I + jj ′ ) , (32) 

llowing for simple computation of u via (30) . 
multi-class classification, Pattern Recognition Letters (2016), 
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Table 1 

Predicted posteriors for pairwise comparison matrix R 

given by (36) . 

C ombining P redicted posteriors 

method ˆ p 1 ˆ p 2 ˆ p 3 

WLW2 0.499863 0.499862 0.0 0 0275 

SBT 0.499975 0.499750 0.0 0 0275 

PKPD 0.50 0 067 0.499842 0.0 0 0 091 

WLW1 0.50 0 088 0.499638 0.0 0 0275 

HT 0.500312 0.499413 0.0 0 0275 

SB 0.682950 0.316902 0.0 0 0147 
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6. Comparison to previously published methods 

Let us compare the Bayes covariant method described above to

previously suggested methods for combining pairwise classifiers.

Two kinds of combining methods have been suggested, both of

them derived from the Bradley –Terry model. 

The first group of methods is based on minimization of a func-

tional, for which the location of the optimum coincides with the

solution of (3) when the latter exists. This underlies the HT method

suggested by Hastie and Tibshirani [17] , who propose to minimize

the Kullback –Leibler divergence between r ij and ˆ p i / ( ̂  p i + ˆ p j ) . Two

further methods were suggested by Wu et al. [18] , who propose to

mini m ize the quadratic forms: 

min 

p 

k ∑ 

i =1 

[ 

k ∑ 

j : j � = i 
(r i j p j − r ji p i ) 

] 2 

, for the WLW1 method (33)

min 

p 

k ∑ 

i =1 

k ∑ 

j : j � = i 
(r i j p j − r ji p i ) 

2 for the WLW2 method (34)

The second group of methods is characterized by attempting to

solve (3) directly. The PKPD method of Price et al. [26] solves a

consistent subset of (3) to arrive at ˆ p i for each i , whereas the SBT

method of Šuch et al. imposes a self-consistency condition on such

estimates [27] . Let us abbreviate the Bayes covariant method de-

scribed in Sections 3 and 4 as SB. All of these methods satisfy the

3-symmetry condition. 

Theorem 3. None of the HT , WLW 1, WLW 2, PKPD and SBT methods

is Bayes covariant. 

Proof. We will use uniqueness of Bayes covariant classifier proved

in Theorem 1 . We can see from (15) that the ratio A = ˆ p 1 / ̂  p 2 of the

Bayes covariant classifier is not rational over the field generated by

r ij . Since all estimates of the methods except the HT method are

rational over the field, it follows that the methods are not Bayes

covariant. 

To exclude the possibility that HT is Bayes covariant we numeri-

cally computed the Kullback –Leibler divergence for estimates given

by both the HT and SB methods. When the matrix of pairwise like-

lihoods is [17, p. 452] : 

R = 

⎛ 

⎝ 

· 0 . 9 0 . 4 

0 . 1 · 0 . 7 

0 . 6 0 . 3 ·

⎞ 

⎠ (35)

then the estimate of the posteriors made by HT method is

ˆ p HT ≈ (0 . 481 , 0 . 242 , 0 . 277) and the Bayes covariant estimate

is ˆ p SB ≈ (0 . 548 , 0 . 192 , 0 . 26) . The Kullback –Leibler divergence is

≈0.376 for the former, whereas it is ≈ 0.397 for the latter. It fol-

lows from this that our method does not minimize the Kullback –

Leibler divergence, and hence it is distinct from the HT method. �

To gain further insight into the relationship between the meth-

ods outlined here, we prepared multidimensional scaling (MDS)

plots. For each K ≤ 9 we sampled 10 5 values for r ij uniformly

from the 
(

K 
2 

)
-dimensional cube. Then we defined the distance be-

tween methods as the proportion of samples for which the MAP

estimates of two methods differ. This distance is symmetric and

respects the triangular inequality. We used classical MDS [28] to

obtain the canonical two dimensional representation as shown in

Fig. 1 . As seen in the figure, the results for K = 3 turned out quite

differently from the others in that all the methods are arranged es-

sentially on a single line. Moreover, the position of the PKPD and

SBT methods were indistinguishable. In looking at the rest of the
Please cite this article as: O. Šuch, S. Barreda, Bayes covariant 
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anels in Fig. 1 we can see that the Bayes covariant method is clos-

st to the method of Hastie and Tibshirani in its classification. 

. Practical considerations 

Let us analyze the applicability of the Bayes covariant method

n practice. 

First and foremost, by construction it gives the correct solution

f the Bradley –Terry equations whenever these equations have a

olution. This is true of all other methods (WLW1, WLW2, HT, SBT,

KPD) and hence in this case all methods agree in predicted poste-

iors as well as in MAP classification. Second, the implementation

f the Bayes covariant method described in Section 5 is straight-

orward and the resulting method is fast. Its computation requires

omputing < K 

2 logarithms and exponentials and computation of

wo matrix–vector multiplications. The only methods which are

impler to implement are PKPD and the fast classification variant

f HT method [17, Theorem 1] . Methods SBT and WLW1 require

nding the eigenvector for eigenvalue λ = 1 of a Markov matrix,

hich can be done quickly. The algorithm for WLW2 method is

ased on a fast iterative scheme. The full HT method is the slow-

st. 

A weaker point of the Bayes covariant method is numerical

nstability near the boundary of the subset of feasible matrices

ithin the set of nonnegative matrices satisfying A + A 

′ = jj ′ − I .

t may well happen in practice that a nondiagonal entry in ma-

rix R approaches 0 or 1. In these cases the entry s i j = log ( 1 
r i j 

− 1)

pproaches infinity or negative infinity. This may cause instabil-

ty in numerical computations, since a computer represents a real

umber with a finite mantissa and a finite exponent. A simple

orkaround is to eliminate from combining all classes C i for which

here exists j � = i such that r ij is zero, or r ij is very small, e.g. below

0 −5 . 

Another important consideration is the required precision of

he binary predictions r ij . Consider the following pairwise poste-

ior matrix 

 = 

⎛ 

⎝ 

· 1 / 2 1 − 10 

−4 

1 / 2 · 1 − 10 

−3 

10 

−4 10 

−3 ·

⎞ 

⎠ (36)

he third row contains very small entries, hence one may expect

hat class 3 is quite unlikely to be predicted (it lost binary com-

arisons with classes 1 and 2 by large margins). Furthermore, the

inary decision between classes 1 and 2 ended up in a tie. As a re-

ult, one would guess that final posteriors would be approximately

1/2, 1/2, 0). The results of predictions by all considered methods

re shown in Table 1 . 

All methods give preference to class 1, but only the Bayes co-

ariant method does so by a large margin. The way to understand

he preference for class 1 is as follows. On the one hand, pairwise

omparison between classes 1 and 2 ended in a tie so one would

xpect that posteriors for classes 1 and 2 are approximately the
multi-class classification, Pattern Recognition Letters (2016), 
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Fig. 1. Metric MDS visualizations of our method (SB) and the methods listed in Section 6 . The underlying metric is the expected proportion of points in parameter space 

where a given pair of methods disagree in the prediction of the likeliest category. 
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Table 2 

Merged TIMIT classes of monophthongs fol- 

lowing [30] . 
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Fig. 2. Posteriors of individual frames in the vowel /ai/ in the word ‘ like’ spoken by 

the speaker MJTC0 in the sentence SA2 from TIMIT [29] . In each plot the horizontal 

axis represents time in seconds; the grey line indicates p = 0 . 5 . 
same 

ˆ p 1 ≈ ˆ p 2 . (37)

On the other hand, we expect posterior ˆ p 3 for the third class to be

small. But Bradley –Terry equations require that 

r 31 = 

ˆ p 3 
ˆ p 3 + 

ˆ p 1 
≈ ˆ p 3 

ˆ p 1 
(38)

r 32 = 

ˆ p 3 
ˆ p 3 + 

ˆ p 2 
≈ ˆ p 3 

ˆ p 2 
(39)

from which 

ˆ p 1 
ˆ p 2 

≈ r 32 

r 31 

= 10 (40)

Any combining method has to resolve the tension between require-

ments (37) and (40) . Compared to the other methods the Bayes co-

variant method puts much larger importance on relative ratios of

even very small entries in matrix R and thus the resulting poste-

riors may differ significantly from other methods. As we will show

in the following section, this may be a very desirable behavior. 

8. Example 

To gain insight into the practical performance of the Bayes

covariant method we conducted experiments classifying speech

frames from the benchmark TIMIT corpus [29] . Of particular inter-

est are diphthongs in which the quality of sound rapidly changes

among multiple categories. To that end we trained classifiers dif-

ferentiating frames among 9 classes of monophthongs as described

in Table 2 . 

Fig. 2 shows a representative result of such classification. The

six panels in Fig. 2 a present multi-class posteriors obtained by dif-

ferent combining methods, and the two panels in Fig. 2 b posteriors

obtained by two noncombining methods. 

Qualitatively, all methods capture the expected acoustic dynam-

ics of the /ai/ diphthong: 

1. the vowel starts from the /aa,ao/ phoneme, 

2. the middle part of the diphthong lies near /eh/ or /ae/, 

3. the sound ends near the /iy/ phoneme. 

However, the Bayes covariant method differs in the following

aspects. 

1. The posterior of the MAP class is often much higher. This can

be seen mostly in /aa,ao/ segments and /iy/ segments. In the
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former, the posterior is above 0.9 for the SB method, whereas

it drops below 0.5 early on for other methods. In the latter case,

the posterior is near 1.0 for the SB method whereas it does not

exceed 0.8 for any of the other methods. 

2. The overall posterior for /eh/ + /ae/ segments is similar to that

of the other methods. This indicates that the method does not

uniformly overshoot the posterior estimate. One can also ob-

serve that although p(/ae/ ) + p(/eh ) for the SB method closely

mirrors the other methods, the p (/ eh /) component does not. 

3. The posteriors oscillate less. Again, this can be seen both for

/aa,ao/ and /iy/ segments. It is even more impressive given that

the individual pairwise classifiers oscillate quite a bit as can be

inferred from the posterior predictions from the different com-

bining methods. 

4. The duration of gaps where none of the three groups (/aa,ao/,

/eh/ + /ae/ and /iy/) has posterior > 0.5 is much shorter for

the SB method. This is mostly due to shortening of “uncertainty

gap” between /eh/+/ae/ segments and /iy/ segments. 

We can examine the last finding in more detail by analyzing

he pairwise likelihood plots shown in Fig. 2 c. We can see that the

B method gives a higher posterior ( ≈0.5) at the onset of /iy/ than

he pairwise LDA model between /eh/ and /iy/. The other methods

o quite the opposite, they indicate lower posterior of /iy/ at the

nset of /iy/ compared to the pairwise LDA model. This means that

B method extracted evidence for the presence of /iy/ from other

airwise models. One model, which detects earlier onset of /iy/ is

he pairwise model classifying between /iy/ and /ae/. As we can see

n Fig. 2 c the model detects the onset of /iy/ earlier that /iy/-/eh/

odel. Overall, extracting information from multiple comparisons

 ij , as demonstrated for the SB method, is a very desirable behavior

or a combining method. 

ethods 

We considered 9 classes of monophthongs as described in the

ork of Lee and Hon [30] . For each class we extracted 10 , 0 0 0 sam-

les from the train section of TIMIT sentences of male speakers.

entences SA1 and SA2 were excluded. Then we trained 

• a binary LDA model for each of the 
(

9 
2 

)
= 36 pairs of classes, 

• a multi-class LDA model, 
• a multinomial model. 

For training we used MASS and nnet R packages. The fea-

ure set consisted of 256 values in the log-periodogram. The

og-periodogram was obtained by taking a 512-point window (at

6 kHz sampling rate its duration was 32 ms), which was weighted

y Hanning window function, and then we took logarithms of

agnitudes of individual Fourier coefficients. 

. Conclusion 

We have introduced the notion of Bayes covariance for multi-

lass combing methods. We have shown that a Bayes covariant

ombining method exist for K ≥ 3, and that for K = 3 there is a

nique method given a 3-symmetry condition. We have compared

he Bayes covariant method with five other combining methods.

omewhat surprisingly, these combining methods lack Bayes co-

ariance, although they have the 3-symmetry property. The perfor-

ance of the newly proposed method differs significantly from the

ther combining methods, both in Monte Carlo simulations as well

s in a speech frame classification task. Crucially, the speech frame

lassification task demonstrated that the Bayes covariant method is

ble to extract information from all pairwise classifiers to arrive at

ore certain, less oscillatory posterior classification compared to

reviously suggested methods. 
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