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ABSTRACT:  

 21 

 

The evaluation of normalization methods sometimes focuses on the maximization of vowel-

space similarity. This focus can lead to the adoption of methods that erase legitimate phonetic 24 

variation from our data–that is, overnormalization. First, a production corpus is presented that 

highlights three types of variation in formant patterns: uniform scaling, non-uniform scaling, and 

centralization. Then the results of two perceptual experiments are presented, both suggesting that 27 

listeners tend to ignore variation according to uniform scaling, while associating non-uniform 

scaling and centralization with phonetic differences. Overall, results suggest that normalization 

methods that remove variation not according to uniform scaling can remove legitimate phonetic 30 

variation from vowel formant data. As a result, although these methods can provide more similar 

vowel spaces, they do so by erasing phonetic variation from vowel data that may be socially and 

linguistically meaningful, including a potential male-female difference in the low vowels in our 33 

corpus.  

 

 36 
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INTRODUCTION 

In recent years, evaluations of normalization methods for vowel formant data have prioritized the 39 

maximization of vowel-space similarity (e.g., Adank, Smits, & Van Hout, 2004; Flynn & 

Foulkes, 2011). For example, Fabricius, Watt, and Johnson (2009) evaluated methods in part 

based on “the degree of intersection of individual vowel spaces achieved by the algorithms, 42 

because an optimal method would achieve the highest possible degree of overlap” (414). Since 

the vertices of vowel-space polygons are defined by tokens of individual vowel categories (e.g., 

/i a u/), in order to make vowel spaces as similar as possible, the vertex vowels must be as close 45 

together as possible in the normalized space (i.e., minimize within-category variance). However, 

production data is typically labelled using broad phonemic, rather than narrow phonetic labels. 

As a result, there is no reason to expect that all tokens labelled in the same way share identical 48 

phonetic properties. For example, Hillenbrand, Getty, Clark, & Wheeler (1995) noted of their 

own dataset: “It should not be concluded that all utterances that were assigned the same 

phonemic label are phonetically equivalent […]. Even a casual listening by an experienced 51 

phonetician shows clearly that there is a range of phonetic qualities within the vowel categories” 

(3108).  

Problems with desiring maximal similarity 54 

Two general problems arise if we take the position that we only care about obtaining maximally 

similar normalized data. First, speakers of a single dialect can produce the same phoneme in 

phonetically different ways based on social or ideological differences, or based on different rates 57 

of participation in sound changes in progress (Podesva, D'Onofrio, Hofwegen, & Kim, 2015; 

Tamminga, 2019). This suggests that we can reasonably expect two speakers in a single 

household, let alone an entire city or province, to exhibit interesting phonetic and structural 60 

differences in their vowel systems. Further, even if two speakers can in some situations produce 

tokens that are phonetically similar to each other, that does not mean that they always do so, or 

that they did so when the data was collected. As a result, the phonetic homogeneity of tokens in a 63 

dataset can never be known a priori, and can only be established empirically after productions 

are observed. Therefore, the a priori preference for normalization methods that maximize the 

similarity of normalized vowel spaces begs the question of the similarity of the vowel spaces, 66 

and may erase important phonetic, within-category variation from our data. 

 A second problem with preferring maximal similarity is that this desire does not offer a 

clear endpoint. In general, adding more parameters to a model will decrease the residual error 69 

and increase the variance explained. Analogously, normalization methods that feature more 

operations and parameters will generally lead to greater reductions in within-category, 

subphonemic variation. As a result, it is not surprising that methods with more parameters 72 

usually provide the ‘best’ performance when this is defined primarily in terms of variance 

reduction. However, if we truly desire methods that maximize the similarity of normalized data, 

it is not clear when we should stop adding more operations to our normalization methods, 75 

removing ever more variation from our data. For example, in addition to controlling for the mean 

and range of vowels along a formant (the first and second moments), perhaps between-speaker 
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variation in the skewness (the third moment) of vowel distributions could also be controlled for. 78 

If the only goal is maximal similarity, there is no clear basis to rule out additional operations so 

long as they ‘improve’ the performance of the algorithm. The limiting case would be a ‘saturated 

model’ that completely erases within-category variation, collapsing all productions of each 81 

phoneme into a single point in the normalized space. Clearly, the output of such a method would 

not be useful for most researchers, suggesting that some constraints on the power of 

normalization methods are necessary in practice.  84 

Phonetic constraints on normalization  

Disner (1980) suggested caution regarding the desire for maximal vowel-space similarity:  

 87 

“it is not enough that [a normalization method] reduce the variance while 

maintaining the separation in any given data set; caution should be exercised to 

ensure that the trends which remain in the normalized data are truly linguistic 90 

trends and not artifacts of the normalization technique itself. It cannot be 

overemphasized that the output of any adequate normalization procedure must be 

a correct representation of linguistic fact” (253).  93 

 

So, rather than wanting all normalized vowel spaces in a sample to be identical, Disner suggested 

that normalized vowel spaces should be identical if and only if their constituent vowels are 96 

phonetically identical. When this occurs, the normalized data will reflect the ‘linguistic facts’ 

represented by the productions.  

Labov, Ash, & Boberg (2005) justified their use of normalization in the Atlas of North 99 

American English by saying that “men, women, and children have very different physical 

realizations of vowels that sound ‘the same’ to a listener. The task of normalization is to find a 

mathematical function that does the same work as the normalizing ear of the listener” (39). This 102 

suggests that there should be perceptual constraints on normalization methods: the ideal method 

will not remove all within-category variation, but just the variation that is perceptually removed 

by listeners. From this perspective, it is possible to ‘overnormalize’ (Barreda & Nearey, 2018) 105 

vowel spaces by removing variation that listeners do not remove in perception, resulting in the 

removal of legitimate phonetic variation from a dataset.  

Nearey (1983) distinguished two types of variation in formant patterns: phone-preserving 108 

variation, and variation that is not phone-preserving. Phone-preserving variation is removed by 

the ‘normalizing ear’ of the listener, and so does not affect the phonetic content of a vowel 

sound. Sounds that differ only in terms of phone-preserving variation are not ‘different’ from the 111 

perspective of the linguistic system: they will convey the same linguistic and social information 

between speakers despite being acoustically different. Barreda and Nearey (2018) argued that the 

ideal normalization method removes only linguistically meaningless, phone-preserving variation, 114 

regardless of its source, leaving only variability associated with differences in the phonetic 

properties of vowel sounds. In this view, we should sometimes accept normalization methods 

that result in more within-category variance (and more vowel space heterogeneity) when this 117 

variation represents legitimate phonetic variation in a set of productions.  
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Phone-preserving variation in formant patterns 

There are several theories of vowel perception suggesting that uniform scaling of formant 120 

patterns is phone preserving, and substantial experimental evidence that this type of variation in 

formant patterns tends to preserve phonetic structure (Barreda, 2020; Nearey, 1978; Smith & 

Patterson, 2005). When formant patterns vary according to uniform scaling, all formants increase 123 

in equal proportion, on average, between speakers. This sort of acoustic variation is expected 

when speakers vary strictly in terms of vocal-tract length, and is often interpreted by listeners as 

indicating a difference in speaker size rather than a difference in the phonetic content of the 126 

signal (Smith & Patterson, 2005). To my knowledge there is no theory of speech perception that 

suggests that uniform scaling is not generally phone preserving. In fact, it is typically deviations 

from uniform scaling that are used to convey linguistic and social meaning between speakers 129 

(see Barreda [2020] for an elaboration of this idea). 

We may compare this to two other sorts of manipulations of formant patterns: non-

uniform scaling and dispersion/centralization. Scaling formant frequencies using a different 132 

factor for each formant (i.e. non-uniform scaling) is generally not considered to be phone-

preserving. Listeners are quite sensitive to the independent manipulation of formant frequencies, 

often associating relatively small changes in individual formants with large changes in vowel 135 

quality. Further, differences in the position of individual phonemes in the 𝐹1 × 𝐹2 plane due to 

dialectal differences (or any other factor) will necessarily feature non-uniform scaling 

differences between speakers. For example, if average productions of /u/ in two dialects have 138 

approximately the same height but differ in frontness, this implies an average difference in F2 

(but not F1) in the productions of /u/ between the dialects. As a result, both synchronic variation 

and diachronic changes in vowel systems may manifest as non-uniform differences in individual 141 

formants, and potential differences in vowel-space shapes. 

Finally, we consider the changes in formant patterns associated with variation in the 

dispersion/centralization of vowel spaces between speakers. Differences in the centralization of 144 

vowels can be quantified using the distance of constituent phonemes to some internal reference 

point (e.g., the vowel-space centroid), and results in the expansion/contraction of a fixed vowel-

space shape. To my knowledge there is no theory of vowel perception that suggests that vowel-147 

space dispersion cannot or generally does not affect phonetic content. In fact, vowel-space 

dispersion relates to the ‘clarity’ of speech (Ferguson & Kewley-Port, 2007), can be affected by 

phonological and lexical factors (Munson, 2007), and potentially conveys linguistic and social 150 

meaning between speakers and listeners (e.g., D’Onofrio, Pratt, & Van Hofwegen, 2019).  

NORMALIZATION OPERATIONS AND PHONE-PRESERVING VARIATION 

If we are interested in determining which normalization methods tend to remove only phone-153 

preserving variation, we must consider two questions. First, which kinds of variation are likely to 

be phone preserving? Second, which kinds of variation are erased by different normalization 

methods? To investigate these questions, we will outline the behavior of three classes of 156 

normalization methods, to be described below: 1) single parameter scaling methods, 2) 

formantwise scaling methods, and 3) formantwise standardization methods.  
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The test corpus 159 

The behavior of normalization methods will be highlighted using a corpus of production data 

collected from 30 speakers of California English (14 males and 16 females), ranging in age from 

18 to 25 (mean = 20.3, standard deviation = 1.7). All speakers lived in California since at least 5 162 

years of age and reported English as their strongest language. This data comprises 15 repetitions 

of 11 English vowel phonemes (/ɪ i ʊ u e ɪ ɛ ʌ æ ɑ o ɝ/) in an /hVd/ context. Words were 

collected in a sound attenuated booth, in a single 30-minute session. Productions were collected 165 

in isolation, using single-word prompts presented on a computer monitor in a random order, but 

blocked by repetition. The first three formant frequencies were measured for each token by 

averaging measurements from 20-40% of the vowel duration, sampled every 3 ms. The high 168 

number of repetitions of each token and the phonologically and acoustically controlled 

conditions were intended to provide information about the idiosyncratic, but consistent, between-

speaker variation present in the sample.  171 

Single parameter scaling methods 

The simplest normalization methods we will consider involve the division of all formant 

frequencies by a single, speaker-specific scaling parameter (Labov et al., 2005; Nearey, 1978). 174 

Division by a single parameter means these methods can only erase differences in vowel-space 

expansion or contraction that is uniform across all formants. This constraint imposes two 

important limitations on the sort of vowel-space variation these methods can erase from data. 177 

First, uniform scaling cannot affect the basic ‘shape’ of vowel spaces as defined by polygons in 

the 𝐹1 × 𝐹2  space. This means that, for example, these methods cannot equate a vowel space in 

the shape of an equilateral triangle and a vowel space in the shape of an isosceles triangle. 180 

Second, uniform scaling can only equate differences in vowel-space dispersion (area) that are 

predictable from differences in average formant frequency. For example, a speaker who produces 

formants that are 15% higher also produces vowel phonemes that are 15% further apart in the 183 

formant space (since all distances have increased by 15%), leading to a predictable increase in 

vowel-space area.  All of the methods we will consider here can remove variation according to 

uniform scaling, providing roughly equivalent outputs when vowel spaces differ mostly in this 186 

manner (see Figure 1).  

 

(1)          𝜎𝑠 =  ∑ ∑ ln(𝐹𝑣𝑗𝑠) / (𝑉 ∗ 𝐽)𝐽
𝑗=1

𝑉
v=1               189 

(2)          𝑁𝑣𝑗𝑠 = ln(𝐹𝑣𝑗𝑠) − 𝜎𝑠       

(3)          exp (𝑁𝑣𝑗𝑠) = 𝐹𝑣𝑗𝑠/exp (𝜎𝑠) 

 192 

A representative of this class of methods is the single-parameter log-mean normalization 

method first proposed by Nearey (1978), henceforth LM. This method finds the mean log-

transformed formant frequency for each speaker (s) across all V vowels and J formants (Equation 195 

1). This single value is then subtracted from the logarithm of each observed formant frequency 

(Equation 2). This method is mathematically equivalent to calculating the geometric mean 

formant frequency and then dividing formant frequencies by this value (Labov et al., 2005), as 198 
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shown in Equation 3. The estimated parameter is represented by 𝜎 to underscore the fact that this 

is a scaling parameter: it affects normalized data only by affecting the scaling of formant patterns 

in a multiplicative manner. 201 

 
FIGURE 1. Vowel spaces of one male and one female speaker who differ primarily according to 

uniform scaling, presented in Hertz and normalized using the log-mean (LM), Watt and 204 

Fabricius (WF) and Lobanov (LB) methods. 

 

Formantwise scaling methods 207 

Rather than using a single parameter for all formants, formantwise scaling methods use an 

independent scaling parameter to normalize each formant (Nearey, 1978; Watt & Fabricius, 

2002). The method proposed by Watt and Fabricius (2002), henceforth WF, will be used to 210 

represent this class of methods. The WF method calculates a scaling parameter for each speaker 

(s) for each formant (j), as in Equation 4. Formant frequencies are then divided by the formant-

specific scaling parameters (𝜎𝑗𝑠), as in Equation 5. Note that unlike in Equation 2, the scaling 213 

parameters feature a formant-specific subscript so that values of 𝜎𝑗𝑠 will differ across the J 

formants.  

 216 

(4) 𝜎𝑗𝑠 = (𝐹𝑗𝑠
/𝑖/

+ 𝐹𝑗𝑠
/𝑎/

+ 𝐹𝑗𝑠
/𝑢/

)/3           

(5) 𝑁𝑣𝑗𝑠 = 𝐹𝑣𝑗𝑠/𝜎𝑗𝑠 

 219 

Although formantwise scaling methods differ in how they define their scaling parameters 

(𝜎𝑗𝑠), the use of an independent scaling parameter for each formant means that these methods 

will erase ‘non-uniform’ shape variation in vowel spaces. As a result, these methods can relate a 222 

vowel space that looks like an equilateral triangle and one that looks like an isosceles triangle, 

potentially making them identical after normalization. For example, although the female speaker 

in Figure 2 has a larger F1 and F2 range than the male speaker, her F1 is larger than expected 225 

given her F2 range, resulting in differences in vowel-space shape between the speakers. As seen 

in Figure 2, these differences can be reduced by formantwise scaling methods such as WF, but 

not by single parameter scaling methods such as LM.  228 
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FIGURE 2. The vowel spaces of one male and one female speaker (top row), and two males 231 

speakers (bottom row) who differ in non-uniform scaling. Vowel spaces are presented in Hertz 

and normalized using the log-mean (LM), Watt and Fabricius (WF) and Lobanov (LB) methods.  

 234 

As noted above, non-uniform differences between speakers can potentially convey 

important linguistic information. For example, the male speakers in Figure 2 produce 

approximately the same F2 values but differ in average F1 across all tokens. It is possible that 237 

these differences represent anatomic variation that should be erased by a useful normalization 

method. However, it is also possible that these represent legitimate phonetic, dialectal variation 

that should be maintained in our data. Unfortunately, formantwise scaling methods do not make 240 

any such distinction and erase such variation indiscriminately.   

Formantwise standardization methods 

The most complex class of methods we will consider control for dispersion and central location 243 

independently for each formant (Gerstman, 1968; Hindle, 1978; Lobanov, 1971). This last class 

of methods features two operations per formant: division and subtraction. Formantwise 

standardization methods will be represented by the method proposed in Lobanov (1971). To use 246 

the Lobanov (henceforth LB) method, researchers calculate the mean (Equation 6) and standard 

deviation (Equation 7) independently for each of J formants, across all the V vowels produced by 

a speaker. Formant frequencies are then standardized by subtracting the formantwise mean for 249 

that formant and dividing by the standard deviation for that formant (Equation 8). 

 

(6) 𝜇𝑗𝑠 = ∑  𝐹𝑣𝑗𝑠  / V𝑉
v=1         252 

(7) 𝜎𝑗𝑠 = √∑ (𝐹𝑣𝑗𝑠 − 𝜇𝑗𝑠)
2

/ V𝑉
v=1        

(8) 𝑁𝑣𝑗𝑠 = (𝐹𝑣𝑗𝑠 − 𝜇𝑗𝑠)/𝜎𝑗𝑠 
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 255 

 
FIGURE 3. The vowel spaces of two male speakers (top row), and one male and one female 

speaker (bottom row) who differ in centralization. Vowel spaces are presented in Hertz and 258 

normalized using the log-mean (LM), Watt and Fabricius (WF) and Lobanov (LB) methods. 

 

Since formantwise standardization methods independently control for both the mean and 261 

range of each formant, these methods will erase differences in formant dispersion 

(hyper/hyporarticulation or centralization) between speakers. For example, in Figure 3 we see 

two pairs of speakers who differ in vowel-space dispersion above and beyond their difference in 264 

average formants. As noted above, there is evidence to suggest that these differences may be 

phonetically salient and linguistically meaningful to listeners. In both cases the differences are 

erased by the LB method but maintained by the WF and LM methods.  267 

 Clopper, Pisoni, & de Jong (2005) reported that the LB method resulted in ‘artifacts’ in 

their data consistent with overnormalization: “the back-vowel fronting that is found in the speech 

of Southern talkers led to a higher mean F2 and a smaller F2 standard deviation. The [Lobanov] 270 

z-score transformation then produced artificially backed low back vowels as a result of the larger 

numerator and smaller denominator” (1674). In this case, the normalized data produced by the 

LB method placed back vowels from different dialects in the same location in the normalized 273 

space despite differences in their phonetic properties (i.e., overnormalization). Clopper et al. 

(2005) went on to state that, “in cases where vowel systems are being compared that differ in 

their overall shape, the z-score transform should be used with caution” (1674). However, this 276 

advice is problematic for the LB method as there may always be differences in vowel-space 

shapes in a sample, and normalization may be desirable precisely to establish the existence of 

such differences.   279 
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NORMALIZED SPACES AS PHONETIC MAPS 282 

Lobanov normalization (LB) was intended to maximize the accurate statistical classification of 

speech sounds, a task for which it is demonstrably well-suited (Adank et al., 2004). The Watt and 

Fabricius (WF) method was designed to aid the visual comparison of vowel spaces of speakers 285 

of the same dialect (Watt & Fabricius, 2002:169), explicitly in cases where vowel spaces of 

roughly the same shapes are expected. Generally speaking, methods are neither good nor bad, 

but are instead suitable for specific purposes. Neither the LB nor the WF method was meant to 288 

preserve or relate information regarding the perceived vowel qualities (i.e., the phonetic 

properties) of a set of vowel sounds in a broad range of circumstances.  

Plots of normalized vowels (and the data used to generate them) are often treated as if 291 

they provided ‘phonetic maps’, broadly analogous to geographic maps. Geographic maps can 

often be interpreted as metric spaces where the Euclidean ‘straight line’ distance in the map 

reflects the geographic distance between real-world locations. If a user of the map sees that 294 

points A and B lie closer together than points A and C, they may infer that A and B are closer 

together in real life. The consistent relationships between distances on the map and the 

geographic distances of real-world locations makes the map useful, as this allows the user to 297 

make reliable inferences based on the map.  

When researchers use normalized vowel spaces as phonetic maps, the Euclidean distance 

(or some other distance metric) between two points is used to quantify the phonetic differentness 300 

of two tokens. A researcher may infer that vowels that cluster together in one location of a 

normalized space have similar phonetic properties because the distances between them are small, 

and that vowels in distant locations have different phonetic properties because the distances 303 

between them are large. Such inferential practices rely on there being consistent relationships 

between distance in the normalized space and the phonetic ‘distance’ of speech sounds. Thus, 

researchers engaging in these practices will benefit from selecting methods that provide reliable 306 

phonetic organizations (‘phonetic maps’) for their data.     

Overnormalization and the reliability of phonetic maps 

An example of how overnormalization can harm the reliability of ‘phonetic maps’ is presented 309 

here. Suppose we are interested in whether the men and women in our sample of California 

speakers have ‘the same’ vowel spaces or not. The men and women in our sample exhibit a non-

uniform difference in their formant patterns. While the female speakers have an F1 mean for /i æ 312 

u/ that is 37% higher than the male speakers, their F2 mean is only 21% higher, meaning their F1 

frequencies have increased 13% more than expected according to uniform scaling. This scaling 

difference results in variation in the shape of the male and female vowel spaces, with the female 315 

vowel space being relatively more elongated along F1 (seen in Figure 4a). The question is, is this 

difference phonetically, linguistically, or socially meaningful? Or is it simply meaningless 

between-speaker variation that we should erase from our data?  318 
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FIGURE 4. Mean productions of a subset of vowels produced by 30 male (dashed line) and female 321 

(solid line) speakers of California English, presented in Hertz and normalized using three 

methods. Ellipses enclose two standard deviations.  

 324 

If relying on the organization provided in Figure 4b, the researcher would likely infer 

from the distance between the tokens that productions of /æ/ differ in height between the male 

and female speakers, meaning these vowels would be able to convey social and linguistic 327 

differences. For example, if representative tokens were played for a room full of linguists (e.g., at 

a conference), the audience would be expected to ‘hear’ a difference in height between the 

vowels and react accordingly. On the other hand, based on the proximity between the tokens, the 330 

researcher would conclude that /u/ does not differ in height between men and women. When 

played for the same room full of linguists, this researcher would expect the audience to think that 

these vowels did not differ substantially in openness. Now, suppose that the organization 333 

presented in Figure 4b represented the true linguistic facts in the data (i.e., /æ/ differs but /u/ does 

not). In this case, a researcher could not make reliable inferences about phonetic characteristics 

using the representation in Figure 4d because distance in the normalized space would not be a 336 

reliable metric for phonetic difference. In some cases, a lack of distance would represent 

phonetic similarity (/u/), while in others it would not (/æ/).  

If a researcher is interested in using distances in normalized data to make inferences 339 

about the phonetic similarity of tokens, they must ensure that distance in the normalized space 

functions as a reliable metric for phonetic difference. The only way to ensure this is to favor 

normalization methods whose outputs accurately reflect the phonetic information in vowel 342 

sounds. Such methods will cluster sounds that are phonetically similar, and separate sounds that 

are phonetically different, even if this results in relatively more within-category variation in 

normalized data. 345 

PERCEPTUAL VALIDATION OF NORMALIZATION METHODS 

There are not many published evaluations of normalization methods that directly consider how 

well these maintain the phonetic properties of speech sounds. Both Hindle (1978) and Labov 348 

(1994) found that Sankoff (1978) normalization (a formantwise standardization method) reduced 

more within-category variation in formant patterns than the LM method. However, it also 

removed some of the socially conditioned variation in vowel quality between speakers (i.e., 351 
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overnormalization). Kohn and Farrington (2012) found a slight advantage for WF over LB 

normalization in the maintenance of perceptually salient sociolinguistic differences, though the 

structure of their statistical models makes their results somewhat difficult to interpret for our 354 

purposes. Kohn and Farrington did not test the LM method because it was found to perform 

poorly by Adank et al. (2004). However, the poor performance of the LM method in Adank et al. 

is likely due to an error in the implementation of the method, which included f0 in the calculation 357 

of the formant-scaling parameter (3103, Eq. 8). This would have caused large deviations in 

speakers’ formant-scaling estimates that were not reflective of changes in vocal-tract length and 

could be extremely deleterious to the performance of the algorithm. More recently, Rankinen & 360 

de Jong (2020) report a comparison of the LB and LM methods, finding that the LM method 

better preserves the vowel-space differences associated with ethnic heritage in their sample.  

Although there has not been much direct perceptual validation of normalized outputs, the 363 

operations employed by the normalization methods have different levels of support as ‘phone 

preserving’ in the literature on speech perception. As noted in the introduction, there is general 

agreement that uniform scaling tends to be phone preserving. What is less certain is which 366 

additional sorts of between-speaker variation can be phone preserving, and under what 

conditions. Here, we seek evidence that the additional operations employed by more complex 

normalization methods (e.g., formantwise scaling, formantwise standardization) are supported by 369 

listener judgments.  

We wish to investigate gradient changes in the sub-phonemic, phonetic properties of 

vowel sounds. One way to do this is by considering the varying classification rates of ambiguous 372 

vowel tokens into two or more phonemic categories (Nearey, 1998). For example, consider a 

continuum spanning between two vowels varying primarily in height (e.g., from /i/ to /ɪ/). 

Imagine we begin with a good exemplar of /i/ that we expect to be classified as /i/ nearly 100% 375 

of the time. As F1 increases, the phonetic ‘height’ of the vowel will decrease, together with the 

probability that it will be identified as /i/. Thus, the increasing probability of an /ɪ/ response 

reflects gradual changes in the phonetic properties of the vowel, providing insight into gradient 378 

variation in the phonetic properties of vowel sounds: acoustically different vowels with similar 

classifications are likely to share phonetic properties.  

Classification rates will be used to investigate which sorts of transformations to formant 381 

patterns are ‘phone preserving’, meaning they can be removed from our data without erasing 

phonetic information. Rather than preferring normalization methods that provide maximal 

normalized similarity, we will prefer methods that cluster vowel sounds that are classified in the 384 

same ways, and separate vowel sounds that are classified in different ways. If a normalization 

method clusters vowels that are classified in substantially different ways, this will be suggestive 

of overnormalization, the artificial grouping of phonetically dissimilar vowels due to the removal 387 

of legitimate phonetic variation from vowel data. 

Simulating between-speaker differences 

The experiments described below feature vowels produced by six artificial speakers. These 390 

speakers share dialectal information but feature systematic between-speaker variation in the 

realization of their tokens. Each speaker was represented by two types of tokens, training stimuli 
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and testing stimuli. Training stimuli consisted of the vowels /i u æ ɑ o/. These vowels were 393 

intended to provide information about speaker vowel spaces, and listeners were not asked to 

classify these vowels. The testing stimuli were a seven-step continuum from the average F1, F2, 

and F3, of /i/ to /ɪ/ in six equal steps (Figure 5a), for each unique voice (Figure 5d). Formant 396 

frequencies for each phoneme were based on average values calculated from our sample of 

California speakers, a subset of which was presented in Figure 4.  

Between-speaker variation existed along two dimensions: vowel-space type (standard, 399 

high F1, and centralized), and size (large, medium and small). Size differences were 

implemented by modifying all formant frequencies in equal proportions (uniform scaling, see 

Figure 5b), and by changing the fundamental frequency (f0) of the vowels. Mean F1, F2, and F3 402 

frequencies across all male and female speakers were decreased by 15% to create the formant 

values for the large standard speaker. Large speakers had F4 values of 3500 Hz, F5 values of 

4500 Hz for all vowels, and f0s that decreased linearly from 120 to 110 Hz during the vowel. 405 

Medium voices were created by increasing all large formant frequencies (F1 to F5) by 14%, and 

by increasing f0 so that it went from 170 Hz to 156 Hz, an increase of a half-octave over the 

large condition. Small voices were created by increasing all medium formant frequencies (F1 to 408 

F5) by a further 14% (30% relative to the large condition), and by increasing f0 so that it began 

at 240 Hz and decreased to 220 Hz over the course of the vowel. This is an increase of a half-

octave over the medium condition, and an octave over the large condition.  411 

 

 
FIGURE 5. (a) Locations of training and testing stimuli for the standard voice. Points indicate the 414 

steps along the /i/-/ɪ/ continuum. (b) Comparison of testing stimuli for the large (L), medium (M) 

and small (S) standard speaker. Smaller speakers produce higher formant-frequencies. Polygons 

outline vowel spaces implied by training vowels. (c) Comparison of testing stimuli for the large 417 

voices by voice type. (d) Comparison of all testing stimuli for standard (circle), high-F1 

(triangle), and centralized (square) voice types across large, medium, and small speakers. 

 420 

Type differences were implemented by varying voices in ways that deviated from 

uniform scaling, within each size level (Figure 5c). The high-F1 speaker was created by 

increasing the standard speaker’s F1 frequencies by 11.5% relative to the standard speaker, but 423 

not modifying any other formant frequencies. This resulted in a non-uniform scaling difference 
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with respect to the standard speaker. The centralized speaker was created by centering formant 

frequencies about their mean values, multiplying centered values by 0.85, and then adding the 426 

mean values back again. This resulted in a vowel space with the same centroid as the standard 

speaker but with reduced vowel space dispersion (i.e. centralization). Formant values for the 

large speaker are provided in Table 1, and all testing vowels for all voices are compared in 429 

Figure 5d. All vowels were 250 ms in duration with steady-state formants, and were synthesized 

using a Klatt-style parametric synthesizer (Klatt, 1980).  

 432 

TABLE 1. Formant frequencies for large-speaker stimuli. Tokens whose vowel labels are 

numbers are steps along the /i/-/ɪ/ continua for the voices, with /i/ being the first step 

 435 

Standard   High F1  Centralized 

F1 F2 F3 Vowel  F1 F2 F3 Vowel  F1 F2 F3 Vowel 

751 1454 2268 æ  838 1454 2268 æ  700 1454 2267 æ 

698 1015 2272 ɑ  779 1015 2272 ɑ  659 1117 2270 ɑ 

527 1089 2202 o  588 1089 2202 o  527 1174 2216 o 

367 1198 2129 u  410 1198 2129 u  404 1257 2160 u 

277 2147 2648 1  277 2147 2648 1  277 2147 2648 1 

309 2087 2613 2  309 2087 2613 2  309 2087 2613 2 

341 2027 2577 3  341 2027 2577 3  341 2027 2577 3 

373 1967 2542 4  373 1967 2542 4  373 1967 2542 4 

405 1908 2507 5  405 1908 2507 5  405 1908 2507 5 

437 1848 2471 6  437 1848 2471 6  437 1848 2471 6 

468 1788 2436 7  468 1788 2436 7  468 1788 2436 7 

 

Differential predictions made by normalization methods 

Consider a researcher who is interested in the phonetic properties of the /i/-/ɪ/ continuum as 438 

produced by our artificial speakers. We may ask a very basic question: which, if any, of the 

tokens in Figure 6a share phonetic properties? Since the speakers differ substantially in their 

acoustics, the researcher cannot compare tokens directly by using formant frequencies measured 441 

in Hertz (i.e., their positions in 6a). A typical approach would be to normalize the continuum 

steps for each speaker, and then compare the normalized data. Figure 6 presents the organization 

of the continuum steps produced by the six voices in normalized spaces. In each case, 444 

normalization was carried out using statistics calculated from the peripheral vowels (/i u æ ɑ o/) 

for each voice, since these provide information about vowel space shape and size.  



Perceptual validation of normalization methods (LVAC) 15     

 

 

 447 
 

FIGURE 6. (a) Testing vowels plotted according to F1 and F2 values in Hertz. The same vowels 

are presented when normalized according different normalization methods (b-d).  450 

 

As noted above, normalized spaces are often treated as metric spaces where Euclidean 

distance is expected to relate to phonetic differentness. Therefore, by proposing different 453 

organizations for the vowel sounds produced by our artificial speakers, the normalization 

methods effectively suggest different phonetic properties for the vowels. The LM method erases 

variation according to uniform scaling, so it will erase differences in formant patterns associated 456 

with the size manipulation. However, all differences in type (standard, high-F1, centralized) are 

predicted to result in phonetic differences (Figure 6b). The WF method can erase variation 

according to non-uniform scaling, and thus it will equate the vowel spaces (and vowels) of the 459 

standard and high-F1 speakers, in addition to removing size differences (Figure 6c). As a result, 

this approach suggests that the differences in F1 range used by the standard and high-F1 speakers 

will not be ‘heard’ by listeners, and will not result in phonetic differences. Finally, the LB 462 

method will erase all differences in size and type, equating the vowels produced by all six 

speakers under consideration (Figure 6d). Although this method results in the tightest clustering 

for each continuum step (i.e., the least ‘within-category’ variance), it also predicts a complete 465 

lack of between-speaker phonetic variation in the productions of the artificial speakers.  

EXPERIMENT 1 

In Experiment 1, listeners were presented with vowels from the /i/-/ɪ/ continuum as produced by 468 

the synthetic speakers described above, in isolation and randomized by speaker. Since listeners 

were asked to classify isolated vowels, they did not have information about the speaker’s vowel-

space dispersion along F1 or F2 when classifying tokens. As a result, it is not expected that 471 

listeners could perform perceptual operations analogous to those required by WF and LB 

normalization in this listening situation. Thus, this experiment is meant to verify that in the 

absence of knowledge about a speaker’s vowel system listeners will: 1) associate vowels 474 

relatable by uniform scaling (size differences) with similar phonetic properties, and 2) will ‘hear’ 

differences that deviate from uniform scaling, associating these with phonetic differences.  

 477 
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Listeners 

Listeners were 32 Native speakers of California English (8 men, 24 women). All listeners lived 

in California since at least two years of age and indicated that English is their strongest language. 480 

Listeners ranged in age from 18 to 35 years, with a mean of 20 and a standard deviation of 3 

years. All listeners were students at the University of California, Davis, who participated in 30-

minute experimental sessions in exchange for partial course credit.  483 

Stimuli 

Stimuli consisted of the seven-step testing /i/-/ɪ/ continuum as produced by the standard, high-F1, 

and centralized voices for large and small speakers. The experiment consisted of 42 unique 486 

vowel sounds (3 voice types × 2 sizes × 7 vowels per voice). A description of the stimuli is 

provided in Figure 5 and Table 1.  

Procedure 489 

Listeners were presented with stimuli over headphones in a sound-attenuated booth. Stimuli were 

presented one at a time, randomized across all stimulus dimensions but blocked by repetition. 

Listeners responded on a graphical user interface with three buttons that read ‘Heed’, ‘Hid’, 492 

‘Head’. Listeners were asked to click on the word “containing the vowel that 'sounds' most like 

the sound you hear”. Listeners were presented with each stimulus up to 6 times for a total 

maximum of 252 responses per participant. All but 3 subjects completed the full experiment, 495 

with the fewest responses per subject being 204. 

Results and discussion 

Figure 7a presents the results of experiment 1. The comparisons presented in Figure 7b suggest 498 

that size differences barely affect classification functions, while voice-type differences have a 

large effect. To investigate this, the following bootstrap analysis was carried out. For each 

bootstrap sample (10,000 total samples), the following process was carried out. Data was 501 

selected from 32 subjects with repetition at the subject level. Classification rates for each 

stimulus into each of the response categories was then calculated. The coefficient of 

determination (squared correlation, R2) between classification rates (for all categories) across 504 

panels in Figure 7a was then found and recorded. This value allows us to quantify the similarity 

of classifications (and phonetic properties) across different formant-pattern manipulations. For 

example, the correlation between the functions in the top and bottom row of the leftmost column 507 

in Figure 7a reveal the similarity of classifications across size manipulations for the standard 

voice. In addition, R2 was calculated for the classification functions of each stimulus across 

successive random samples in order to get an estimate of the sampling error for the classification 510 

functions. 
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 513 

FIGURE 7. (a) Proportion of classifications into response categories for each continuum step, by 

voice type and size. (b) The top row contrasts classifications across size for each voice type 

(small voices in broken lines). The bottom row contrasts average classification rates for standard 516 

(Std), high-F1 (HF1) and centralized (Cent) voices, averaged across sizes.     

 

 519 

 
 

FIGURE 8. (a) Distribution of squared correlation (R2) between classification functions for pairs 522 

of voices in the bootstrap analysis. Lines indicate 95% highest-density intervals, points indicate 

means. Numbers indicate corresponding lines in the right panel. (b) Testing continua used in this 

experiment. Lines indicate specific differences highlighted in the left panel. For example, 525 

although line (1) indicates a small acoustic difference, the members of these continua are 

phonetically dissimilar. In contrast, line (3) compares continua that are acoustically dissimilar yet 

phonetically similar.  528 
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Figure 8a presents the distribution of estimated R2 values for all 15 unique voice 

comparisons, and the estimate of the sampling error. In general, size variation tends to result in 

small changes in classification functions that are not much larger than the sampling error, while 531 

type variation can result in very large differences in classification rates. Figure 8b highlights the 

discrepancy that can exist between the acoustic and phonetic properties of vowel sounds. For 

example, the average R2 between the large and small standard voices was 0.93, while the R2 534 

between the standard and high-F1 small voices was 0.54. This means that an increase of 11.5% 

to F1, with all other formants and f0 held constant, caused a substantially greater phonetic 

change than a 30% shift to all formant frequencies, combined with an octave difference in f0. 537 

Results indicate that when little is known about the speaker (e.g., in mixed-speaker 

listening conditions, when playing an isolated example at a conference) data normalized using a 

single parameter scaling method (e.g., LM) is most likely to reflect the phonetic organization of 540 

vowel sounds. In these situations, normalization methods that perform formantwise scaling or 

standardization (e.g., WF and LB) can overnormalize vowels, eraseing perceptible phonetic 

variation from vowel formant data.  543 

EXPERIMENT 2 

Listeners may exhibit behaviors that justify the use of formantwise scaling and standardization 

methods in situations where they have more information about a speaker’s vowel system. In the 546 

second experiment vowels produced by different synthetic voices are presented in blocked 

conditions, after familiarization with a speaker’s vowel space.  

Participants 549 

Listeners were 49 Native speakers of California English (29 men, 20 women). All listeners lived 

in California from at least six years of age and indicate that English is their strongest language. 

Listeners ranged in age from 18 to 22 years, with a mean of 19 and a standard deviation of 1.2 552 

years. All listeners were students at the University of California, Davis, who participated in 30-

minute experimental sessions in exchange for partial course credit.  

Stimuli 555 

Stimuli consisted of the vowels /i u æ ɑ o/, and the seven step /i/-/ɪ/ continuum produced by the 

large standard voice, and the medium and small high-F1 and centralized voices. Stimulus 

information is presented in Table 1 and in Figure 5. The vowels /i u æ ɑ o/ served as training 558 

stimuli, which were meant to provide listeners with information about the location and dispersion 

of the speaker’s vowel space. The seven step /i/-/ɪ/ continuum were the testing stimuli, the 

vowels sounds that listeners would be asked to classify during the experiment. 561 

Procedure 

Each listener heard vowels produced by three speakers: a single speaker for each voice type, 

each paired with a different voice size. All listeners heard the standard voice paired with the 564 

large size. Half of listeners heard a medium high-F1 voice and a small centralized voice, and the 

other half heard the opposite combination: the medium centralized voice and the small high-F1 

voice. So, each listener heard three different speakers, and these speakers differed in their voice 567 
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size and in their voice type.  

The experiment consisted of five rounds. Round 1 was an initial mixed-speaker condition 

where listeners were presented with testing stimuli (7-step /i/-/ɪ/ continuum) for each of the three 570 

voices 5 times each, blocked by repetition. Listeners were not given information about how 

many voices they would be hearing, when any given speaker was speaking, or what any of these 

speakers sounded like. In all rounds, classification was carried out using the same instructions 573 

and general procedure as in Experiment 1. 

Rounds 2-4 were blocked-speaker rounds. First, listeners were informed that they would 

listen to some vowels produced by a single speaker, and that they would then be asked to classify 576 

vowels produced by that same speaker. Listeners heard the training vowels (/i u æ ɑ o/) repeated 

5 times each, blocked by repetition, with 500 ms of silence in between each vowel (25 total 

sounds). After this, listeners were asked to classify the testing stimuli (/i/-/ɪ/ continuum), 4 times 579 

each blocked by repetition (28 classifications per round). During these rounds, a large label 

displayed the speaker number (e.g., ‘Speaker 1’) using labels 1, 2, and 3 for the speakers in 

rounds 2, 3, and 4 respectively. The second round always featured the large standard voice. Half 582 

of participants heard the medium voice in round 3 and the small voice in round 4, and the other 

half heard the small voice in round 3 and the medium voice in round 4.  

Round five was a final mixed-speaker round, after familiarization with the talkers. As in 585 

round 1, listeners were presented with testing stimuli for three voices 5 times each, blocked by 

repetition. However, in this round a label told listeners which speaker was producing each token 

(as in rounds 2-4). Listeners were also instructed before beginning the round that these labels 588 

would tell them which speaker produced the vowel, and that these speakers would be the same 

ones they just heard in the previous rounds.  

Results and discussion  591 

Classification differences between blocks 

We are primarily interested in the blocked-voice rounds as these represent situations 

where listeners had the most information about vowel-space characteristics. However, we were 594 

also interested in comparing listener behavior across different presentation types. It may be the 

case that listeners are operating in a sort of LM-compatible listening mode in the initial mixed-

voice round (as in Experiment 1). In blocked-voice rounds after familiarization, listeners may 597 

shift to a listening mode more in line with the outputs of the WF and LB normalization methods. 

In the final mixed-voice round, listeners could revert to an LM listening mode or they may 

‘remember’ the voice of speakers in the final round, behaving in a similar manner to blocked-600 

voice rounds.  

If listeners were changing their behavior across presentation type, we would see 

differences in the classification functions of voices across rounds. The three speaker types would 603 

be differentiated in the initial mixed-voice round (as in experiment 1), then look more similar (or 

identical) in the blocked-voice round, with unclear expectations for the final mixed-voice round. 

As seen in Figure 9, listeners are not exhibiting substantially different behavior across the 606 

presentation types. Classification functions differ across voice types in all presentation 
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conditions, indicating that listeners are not perceptually ‘erasing’ the variation in formant 

patterns that distinguishes these voice types, even when given more information about the 609 

idiosyncratic differences between speakers. A more complete analysis of the results in the 

blocked rounds is provided in the following section.  

 612 

 
 

FIGURE 9, Proportion of classifications into /i/ (left distribution), /ɪ/ (middle distribution), and /ε/ 615 

(right distribution) by continuum step, presented across voice and presentation type. The final 

row compares the classification functions of the panels in each column. The final column 

compares the classification functions for the panels in that row. 618 

 

Blocked-Speaker Rounds 

In blocked speaker rounds (2-4), listeners are asked to classify continuum vowels after 621 

being presented with examples of a speaker’s peripheral vowels (/i u æ ɑ o/). In these rounds, 

listeners could potentially use the familiarization vowels to adapt to the speaker, and classify the 

continuum vowels relative to knowledge of the speaker’s vowel space. In other words, in these 624 

rounds it is clear that listeners could exhibit perceptual behavior in line with WF and LB 

normalization if they were so inclined, as they have all the information required by these 

normalization methods.  627 

To investigate support for phone-preserving variation in line with WF and LB 

normalization in blocked-speaker rounds, the testing vowels were normalized using the three 

methods (LM, WF, and LB) based on vowel-space statistics calculated using the training stimuli, 630 

as in Figure 6. An ordinal logistic multilevel regression model was fit to listener classification 
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data for the blocked-speaker rounds (2-4), for each normalization method. Each model had a 

single predictor (position in the normalized space) with random slopes and intercepts for listener. 633 

Since variation in the testing continuum was almost entirely unidimensional (99-100% of 

variance along the first principal component), the position of each token was specified along the 

axis of the first principal component of stimulus variation for each normalized space 636 

(corresponding primarily to F1).  

The above models were used to predict classification rates along the different normalized 

spaces. The classification rates predicted by each model represent our best estimates of the 639 

phonetic properties associated with each location in the normalized space, given our data. For 

example, we could say that a token at coordinate 〈𝑥, 𝑦〉 in the LB normalized space is 78% likely 

to be classified as /i/, 13% likely to be classified as /ɪ/, and 9% likely to be classified as /ɛ/. 642 

Ideally, a normalization method will offer a tight clustering of tokens along predicted 

classification rates so that, for example, all stimuli near 〈𝑥, 𝑦〉 in the LB space are more likely to 

be classified as /i/ than /ɪ/. When this does not occur, tokens in one location of the normalized 645 

space will have diverse phonetic properties, meaning that distance in the normalized space will 

not be a reliable metric for phonetic differences.  Figure 10a compares predicted classification 

functions (solid lines) to the observed classification rates of testing vowels (points) in blocked-648 

speaker conditions. Each row presents the same data, with differing alignments between 

predicted and observed classifications arising from the differing arrangement of tokens in the 

normalized space (seen in Figure 6).  651 

In Figure 10a we see that the decreased similarity of normalized vowel spaces provided 

by the LM method directly leads to a greater degree of clustering of tokens in the LM-

normalized space. The LM method groups the first step of the centralized continuum, the second 654 

step of the high-F1 continuum, and the third step of the standard continuum because these are all 

being classified as /i/ roughly 70% of the time. In contrast, the increased vowel-space similarity 

afforded by the LB and (to a lesser extent) the WF methods is obtained by grouping phonetically 657 

dissimilar vowels, and leads to less certainty regarding the vowel quality associated with any 

given sound. For example, as seen in the right column of Figure 10a, the third continuum step is 

classified as /i/ for the standard voice (circles) and as /ɪ/ for the high-F1 and centralized voices 660 

(triangle, square), despite being placed in the same location in the LB-normalized space. Thus, 

we see that the LB method is placing tokens that correspond to different vowel phonemes in a 

single location in the normalized space. 663 

The following bootstrap analysis was carried out to investigate the reliability of the 

differences seen in Figure 10a. For each of 10,000 iterations, pooled classification rates were 

found for each stimulus for data from 49 listeners, resampled with replacement at the listener 666 

level. Then, the square of the correlation (R2) between the predicted and observed classification 

rates was calculated and recorded, independently for each normalized space. When the 

classification of tokens is highly predictable from their position in the normalized space, R2 will 669 

be high. As a result, a high R2 indicates that distance is a good metric for phonetic differences in 

a given normalized space. In contrast, a lower R2 indicates that there is more variation around 

any given location, meaning there can be less certainty regarding the phonetic properties of any 672 



Perceptual validation of normalization methods (LVAC) 22     

 

 

given vowel. The correlation between all tokens across successive samples was also recorded in 

order to get an idea of the amount of random error expected across samples.  

 675 

 

 

FIGURE 10. (a) Points indicate classification rates for all testing stimuli into different categories, 678 

organized along each of the different normalized spaces. Continuum steps increase left to right. 

Point types indicate standard (circles), high-F1 (triangle) and centralized (square) speakers. Lines 

indicate predicted classification rates at each location. (b) Distribution of R2 for each 681 

normalization method, and the differences in R2 between each method resulting from the 

bootstrap analysis.   

The distribution of recorded R2 values for each normalization method is presented in 684 

Figure 10b, as are distributions of differences in R2 between the methods. Results indicate a 

slight advantage in R2 for LM normalization over the WF method, while both the LM and WF 

methods show a large advantage over the LB method. It is important to note that although the 687 

differences between the LM and WF methods were small, they were very consistent, with the 

LM method showing an advantage in 99.2% of samples. Further, the acoustic differences 

between the standard and high F1 voices were not large: an 11.5% difference to a single formant 690 

frequency. If the acoustic difference had been doubled, it is reasonable to think that listeners 

would have heard a larger phonetic difference between the standard and high-F1 voices, leading 

to a larger advantage for the LM method. However, in such a situation the WF (and LB) methods 693 

would have erased this variation just the same.   

GENERAL DISCUSSION 

The goal of the experiments outlined above was to investigate which sorts of normalization 696 

operations are perceptually justified, meaning they tend to remove only phone-preserving 

variation from formant patterns. Experiment 1 showed that in situations with no information 

about speakers, large differences in uniform scaling were mostly ignored, while relatively 699 

smaller differences that deviate from uniform scaling resulted in large shifts in classification 

functions, suggesting differences in perceived vowel quality. In experiment 2, we saw that this 

tendency is maintained even when listeners have information regarding the geometry of the 702 
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speaker’s vowel space, allowing them an opportunity to perceptually ‘erase’ systematic 

deviations from uniform scaling of formant patterns. Overall, results indicate that variation in 

formant patterns according to uniform scaling tends to be phone preserving, while deviations 705 

from uniform scaling tend to be ‘heard’ by listeners, resulting in variation in the phonetic 

properties of vowel sounds.   

We may return to the possible differences in the low vowels produced by the male and 708 

female speakers in our corpus (Figure 4), presented in more detail in Figure 11. Often, a 

researcher wishes to use distance in the normalized space in order to quantify some linguistic 

difference between productions (e.g., Clopper et al., 2005; Podesva et al., 2015). As an example 711 

of this, we will investigate the normalized productions of the California speakers described 

above. It is expected that differences in normalized F1 should relate to variation in phonetic 

height and differences in normalized F2 should relate to variation in phonetic frontness. A series 714 

of two-sample t-tests were carried out comparing average productions of each phoneme by male 

and female speakers. Differences were tested along F1 and F2 independently, for each 

normalization method (summarized in Figure 11).  717 

 

 
 720 

FIGURE 11. In the top row, productions of 30 male (dashed line) and female (solid line) 

California speakers are compared for low and mid vowels. Ellipses enclose two standard 

deviations. In the bottom row, lines indicate values of t-statistics comparing means for each 723 

vowel along F1 (circles) and F2 (squares). The horizontal dotted lines indicate the level at which 

values reach significance, and filled points indicate significant comparisons.  

  726 

A reliance on significance testing to infer ‘real’ phonetic differences between the men 

and women in our sample suggests different patterns of results based on the normalization 

method chosen, making the choice of method of high practical importance. The different results 729 

presented in Figure 11 primarily arise from the non-uniform scaling differences between the 
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male and female speakers seen in the original data (see Figure 4). This variation is directly 

analogous to the difference between the large standard voice and the small high-F1 voice. The 732 

results of the experiments above indicate that listeners are likely to ‘hear’ these non-uniform 

differences in formant scaling, suggesting likely differences in the phonetic properties of the low 

vowels produced by these speakers. Based on this, the organization presented by the LM method 735 

is most likely to reflect the phonetic properties, and the linguistic facts, of the data in question.  

As noted in Barreda and Nearey (2018: Appendix) there is good evidence that speakers 

vary in production in ways that can only be captured by formantwise standardization methods. 738 

So, it is a fact that speakers differ from each other in the range and location of each formant 

(somewhat) independently, in a manner consistent with the complexity of Lobanov 

normalization (as seen in Figures 2, and 3). However, there is no evidence that listeners exhibit 741 

this level of complexity in their perceptual normalization. Basically, it appears as though we are 

Lobanov speakers but log-mean listeners: our variation in production is as complex as the 

Lobanov model, but our adaptation to this variation in perception is only as complex as the log-744 

mean model. As a result, the many subtle, idiosyncratic between-speaker differences in 

production that cannot be captured by single parameter scaling methods may result in 

perceivable phonetic differences that potentially transmit linguistic and social information 747 

between speakers (Barreda, 2020). Thus, a focus on finding a normalization method that “does 

the same work as the normalizing ear of the listener”, as Labov and colleagues put it, will focus 

on modeling the judgments of human listeners in response to between-speaker variation in 750 

production, rather than on modeling the variation in production itself. 

Limitations and future directions 

Although we did not observe any perceptual behavior consistent with WF and LB normalization, 753 

it is possible that the design of the experiment (the stimuli, the training, etc.) was such that we 

did not ‘trigger’ whatever perceptual processes are necessary to result in outputs like those of 

WF and LB normalization. It is difficult to prove that perceptual processes consistent with WF 756 

and LB normalization never occur. Instead, we looked for positive support for the use of these 

methods in different listening conditions and failed to find any. Further work is needed to 

investigate whether formantwise scaling and formantwise standardization methods are perhaps 759 

appropriate in other listening situations. However, there is reason to be somewhat skeptical of 

this possibility. As noted earlier, formantwise scaling and standardization methods do not 

conform to any well-known theory of vowel perception, nor do they have any empirical support 762 

in the literature on speech perception. Further, it bears noting that if listeners only perceive 

speech in modes consistent with WF and LB in a very restricted set of conditions, then the output 

of these normalization methods will also only be valid in those conditions.  765 

Although uniform-scaling methods were the best testing in our comparison, there is room 

for improvement. For example, as seen in Figure 7, there is systematic variation across sizes 

within voice types that cannot be explained by single parameter scaling methods. This suggests 768 

the possibility of a more complicated relationship between the lower formants (F1 and F2), the 

higher formants (F3 and above), and the fundamental frequency of vowel sounds. A perception-

centric perspective on normalization suggests that we should adapt these methods as required so 771 
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that they reflect listener judgments of the phonetic properties of vowel sounds. Thus, a better 

understanding of the nature of ‘phone-preserving’ variation in speech perception can only benefit 

empirical research investigating variation and change in vowel systems across speakers.  774 

Finally, it bears noting that the search for the ‘perfect’ normalization method from a 

perception-centric perspective is complicated by the fact that vowel-quality judgments are 

inherently ‘fuzzy’, varying probabilistically within-listener and systematically between listeners. 777 

Listeners of the same dialect, and even trained phoneticians, can have differences of opinion 

regarding the vowel quality associated with a given sound. Further, the development of the 

‘perfect’ normalization method is limited by our knowledge of human speech perception, which 780 

is as yet incomplete. As a result, the outputs of normalization methods should perhaps be thought 

of as estimates of the judgments of some ‘average’ listener, to within some degree of certainty. 

Of course, employing a normalization method that focuses primarily on maximizing vowel-space 783 

similarity does not make any of this uncertainty go away, and potentially obscures the truth 

further. Thus, if researchers intend to use normalized data to make inferences about the vowel 

quality of a set of tokens, they will benefit from employing methods whose outputs more-closely 786 

reflect the perceptual organization of those tokens. However, it is useful to always keep in mind 

the limitations inherent in representing complex perceptual events such as vowel sounds using 

points in a low-dimensional space.  789 

CONCLUSION 

Instead of desiring maximally similar normalized data, researchers may benefit by focusing on 

obtaining normalized data that reflects the phonetic properties of a set of vowel sounds. When 792 

this is the case, normalized tokens will lie together if they ‘sound’ similar and lie apart if they 

‘sound’ dissimilar. Speakers with vowel systems whose tokens largely lie together in the 

normalized space will tend to sound ‘the same’ to listeners, therefore likely constituting speakers 795 

of the same dialect. So, by attempting to obtain data that reflects the perceptual and phonetic 

structure of speech sounds, we can allow for a ‘bottom-up’ approach to investigating the 

homogeneity of groups of speakers rather than imposing homogeneity through the selection of 798 

our methods.  

The results of two perceptual experiments suggest that single parameter scaling methods 

(e.g., log-mean normalization) most faithfully reflect the phonetic structure of vowel sounds, and 801 

that formantwise scaling or standardization methods (e.g., Watt and Fabricius, Lobanov) can 

both remove legitimate phonetic variation from vowel formant data. As a result, the log-mean 

method is likely preferable in cases where researchers wish to use distances in the normalized 804 

space to infer the phonetic properties of a set of vowel sounds. However, although the log-mean 

method performed best of the methods we tested, there is room for improvement, and it is crucial 

to continue to investigate and refine the normalization methods so often relied upon in 807 

quantitative variationist research.  
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