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Abstract  

 

Fast Track is a formant tracker implemented in Praat that attempts to automatically select the best 6 

analysis from a set of candidates. The best track is selected by modeling smooth formant contours 

across the entirety of the sound, providing the researcher with rich information about static and 

dynamic formant properties. Fast Track returns text files containing acoustic information (e.g, 9 

formants, formant bandwidths, fundamental frequency) sampled every 2 ms, generates images 

showing the winning analysis and comparing alternate analyses, and creates log files detailing 

analysis information for each file. Fast Track features a modular workflow that allows for analysis 12 

steps to be run (and re-run) independently as necessary. In addition, Fast Track is designed to allow 

for easy correction of tracking errors by allowing the user to override the automatic analysis, or 

manually edit tracks where necessary. The design and use of Fast Track are outlined using a re-15 

analysis of the Hillenbrand et al. (1995) dataset, which suggests that Fast Track can be very accurate 

in cases where signal properties allow for reliable formant estimates.  
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1. Introduction 24 

Linguists often measure the formant frequencies of vowel sounds in order to make quantitative 

statements about dialectal and social differences between speakers. Although reliable inferences 

depend on accurate formant measurements, formant frequencies are notoriously difficult to measure 27 

automatically with high accuracy. The main obstacle to accurate, unsupervised formant-estimation is 

that the optimal analysis parameters vary between speakers and phones (Kendall & Vaughn, 2020). 

As a result, it is difficult to know a priori which analysis best suits a given token. In the simplest 30 

approach, the researcher can repeatedly adjust the analysis settings (i.e., attempt multiple analyses) 

until they find an acceptable result. However, this approach is time consuming, difficult to reproduce, 

and not systematic. In response to this, many automatic formant-tracking schemes have been 33 

proposed over the years (e.g., Nearey et al., 2002; Escudero et al., 2009; Zhang et al., 2013; 

Weenink, 2015). Most of these follow the same general procedure: 1) A set of candidate analyses are 

generated by modifying analysis parameters in a systematic way, 2) The ‘goodness/badness’ of each 36 

analysis is quantified using one or more metrics. 3) The ‘best’ analysis is selected based on the 

metric(s) and returned to the user. Effectively, these approaches automate the repeated cycles of 

parameter adjustments and output evaluation that would otherwise be carried out by the researcher.  39 

Fast Track is a plugin for Praat (Boersma, 2020) that provides a modular, customizable, 

automatic formant-tracker. Fast Track carries out multiple analyses for each sound (as in Figure 1) 

and looks for the ‘best’ analysis. Fast Track will then generate text files containing time-varying 42 

acoustic information (formant frequencies, formant bandwidths, fundamental frequency, sound 

intensity, and harmonicity), and can be modified to include any other analysis carried out by Praat. 

This rich information allows researchers to model formant contours, and to summarize formant 45 

values with precise control. Fast Track is implemented entirely using Praat scripts, which are saved 

as plain-text files. This means that the user can easily change or extend its behavior by modifying the 

appropriate script in any text-editing software. In addition, although Fast Track can be quite accurate 48 

in many cases, a focus has been placed on creating an easy workflow in situations where automatic 

tracking fails. Fast Track makes correct analyses easy to verify, and errors easy to correct by saving 

information regarding all intermediate analysis steps, and all alternate analyses. 51 

 

2. Fast Track 

An overview of the design and function of Fast Track will be provided here. For more specific 54 

information about the current implementation, parameter settings, or general usage, please visit the 

Fast Track wiki [link]. Fast Track is intended to analyze sound files that contain only a single vowel 

sound1, and can analyze a single file at a time or carry out a batch analysis of an entire folder of files 57 

(each containing a single sound). The description of the folder-tracking option will be provided in 

this section, with a summary of the data generated at each step provided in Figure 2.  

 60 

 
1 More generally, the method used to pick the best analysis assumes that formants exist and are continuous 
throughout the recording. Fast Track can be used to analyze sounds that contain sequences of sonorants and vowels, 
or potentially other sounds, provided that these feature formants without discontinuities, and that the order of the 
regression analysis is large enough to adequately represent the movement of the formants in the interval.  
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Figure 1 - Twenty analyses of the same sound: a production of ‘had’ by an adult male speaker. Each analysis looks 63 
for the same number of formants (5.5), though only the lowest three are drawn. Analyses vary in the maximum 
frequency below which the algorithm looks for formants (indicated above each plot), increasing in 150 Hz steps 
from left to right, top to bottom. A broad range of intermediate frequencies provide accurate analyses. Cutoff 66 
frequencies that are too low (top left, 4700 Hz) or too high (bottom right, 7550 Hz) can result in large errors.    
 

 69 

 
 

Figure 2 - Schematic of the output files created and modified at each step of Fast Track. In the first step, analysis 72 
files are generated, in the second step they are evaluated, and in the final step the best analyses are collected. More 
information is provided in sections 2.1, 2.2, and 2.3.  
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2.1 Analyzing the sounds 75 

Linear Predictive Coding (LPC) is used to estimate formant frequencies. An LPC analysis assumes 

that the sound spectrum can be characterized by a series of formants, and then tries to estimate the 

frequencies (and bandwidths) of those formants. A researcher using LPC has to set two parameters: 78 

How many formants to look for and what frequency to look below? Following Praat, these 

parameters will be referred to as ‘Maximum number of formants’ and ‘Maximum formant (Hz)’, 

respectively. If a researcher looks for more formants than exist below a given maximum-formant 81 

frequency, LPC will tend to find formants where there are none. For example, much of the F3 track 

in the top-left plot in Figure 1 is in a location between F2 and F3 where there is no formant. When 

the researcher asks for fewer formants than exist below a given frequency, LPC will tend to skip or 84 

merge formants, as has happened with F1 and F2 in the bottom-right of Figure 1. Thus, accurate LPC 

analyses require the user to specify an appropriate number of formants to be found below a given 

maximum-formant frequency.  87 

 In the first step, the candidate formant-analyses are generated and recorded for each sound 

file. Fast track requires that audio files be cut so that they each contain only a single vowel, and 

provides functions to help extract vowels from longer stretches of audio. Although Fast Track allows 90 

the user to collect either 3 or 4 formants, the initial analysis always looks for 5.5 formants (the half 

formant helps model variation in spectral tilt). Modeling 5 formants even if the researcher desires 

fewer ensures that the formants that are of interest will be substantially lower than the maximum-93 

formant frequency. Fast Track asks the user to specify low and high maximum-formant frequencies, 

and the number of steps that should be taken between these limits.  

For instance, a user might indicate that they want to take 20 analysis steps between 96 

maximum-formant frequencies of 4800 and 7300 Hz (including the endpoints). This means that Fast 

Track will analyze a token looking for 5.5 formants below 4800 Hz, and save the analysis in a text 

file representing a Praat ‘Formant’ object. The maximum-formant frequency will then be increased to 99 

the next step (in this case 4931 Hz) and the analysis will again be carried out and recorded. This 

process will be repeated until the final analysis is reached (maximum formant = 7300 Hz). The 

output of this stage is n text files for each sound file, representing the n analysis steps. Fast Track 102 

also generates log files containing analysis information for each sound file.  

 

 105 

2.2. Selecting the best analysis 

Fast Track selects the best analysis based primarily on the intrinsic properties of the formant tracks, 

with only some (optional) heuristics to rule out unrealistic values (e.g., median F1 > 1200 Hz). The 108 

goodness of different analyses is quantified using a similar approach to Weenink (2016): each 

formant is modeled using a regression analysis, and the smoothness of each track is quantified using 

the residuals of the regressions (see Figure 3). Since samples are taken densely across time (every 2 111 

ms by default), and each sound file only contains a single vowel segment, variation from sample to 

sample that is not along a smooth trajectory is very likely to indicate a measurement error. Thus, all 

other things being equal, the analysis with the smallest residuals (i.e. the least ‘roughness’) across all 114 
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formants will reflect the smoothest formant trajectories and will be selected as the best track2. In 

cases where an analysis violates one of the heuristic constraints, a penalty is added to the roughness 

score, further decreasing the viability of a given analysis. For analyses of equal smoothness, the one 117 

that violates the fewest heuristic constraints will be chosen.  

In the second step, the following actions are taken for each sound file. Regression models are 

fit for each formant, predicting frequency as a function of time (predicted formant values and 120 

regression coefficients are recorded in log files). After this, the total ‘badness’ score (roughness + 

heuristic violations) for each analysis frequency is found and recorded in a text file. A comma-

separated file (a file containing the ‘winners’) is generated recording the best analysis for each sound 123 

(i.e., the smallest badness score), allowing this information to be viewed and modified by the user. 

Finally, images are generated comparing all of the candidate analyses and indicating which analysis 

was automatically selected as best (similar to Figure 1). 126 

  

 
 129 
Figure 3 - (a) Result of analyzing an adult-male production of ‘head’ with a maximum formant of 5063 Hz. Filled 
points indicate predicted formant values, empty points (in lighter colors) indicate observed formant frequencies. The 
mean absolute error (MAE) between predicted and observed values is 58 Hz. (b) An analysis of the same sound with 132 
a maximum formant of 5589 Hz, resulting in an MAE of 151 Hz. (c) A comparison of the two analyses, 5063 Hz in 
red, and 5589 Hz in grey. Despite their similarities, the analysis in red is smoother, and therefore preferable.    

 135 

2.3 Collecting winners and generating output data 

In the third step, Fast Track refers to the text file recording the best analysis for each sound file (the 

‘winners’ file generated at the end of the second step). For example, if the winners file indicates that 138 

the best analysis for the first sound is analysis 14, Fast Track will make a copy of this analysis file 

and move it to a directory that contains only the winning analysis for each file. The user also has the 

option of specifying a different analysis for each formant, which Fast Track will combine into a 141 

single analysis. For example, a researcher can replace a single bad formant in an otherwise good 

analysis by combining the F1, and F2 from one analysis with the F3 from another analysis. After this, 

Fast Track will generate a comma-separated text file containing the following information sampled 144 

every 2 ms (by default): formant frequencies and bandwidths, predicted formant frequencies, 

 
2 Since Fast Track selects the single best overall analysis across all formants, this may not provide the best analysis individually 
for each specific formant. As discussed in Section 2.3, Fast Track allows the user to combine formant tracks from different 
maximum-formant frequencies. Fast Track also offers several ways to model the formant trajectories and to calculate and 
combine smoothness estimate, as discussed in the wiki [link]).  
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fundamental frequency, sound intensity, and harmonicity. An image is also generated comparing a 

spectrogram of each sound to the observed and predicted formant frequencies suggested by the 147 

winning analysis. 

Although the second step (selecting winners) and third step (collecting winners) of the 

analysis are run automatically by default, Fast Track allows these steps to be run (and re-run) 150 

separately. This separation facilitates the correction of errors without requiring any technical 

knowledge, and allows for work to easily be carried out in a distributed fashion. For example, 

researchers can validate analyses by looking at the generated images, and these decisions can be 153 

recorded into the text file containing information about winning analyses with any text-editing 

software. Alternatively, researchers may wish to select winners entirely by other means, and then 

integrate these selections into their Fast Track workflow. In addition to the intrinsic properties of 156 

different analyses, the selection of the best analysis could also incorporate knowledge of plausible 

formant ranges for phonemes in a language or dialect (e.g., Labov et al., 2013). For example, since 

an F1 of 700 Hz is not plausible for /i/, any analysis returning such a value can be ruled out as a 159 

candidate. When enough tokens are available for each speaker, the selection of the best analysis 

could also consider expectations regarding values for each vowel and formant (e.g., Escudero et al., 

2009). For instance, if a speaker tends to produce F3 near 2400 Hz for /o/, a single F3 near 3400 Hz 162 

is likely to be an error. Although Fast Track does not incorporate such methods into its initial 

selection, information regarding the formant contours and smoothness of all alternate analyses is 

saved in text files. As a result, the analyses generated by Fast Track can easily be imported into 165 

statistical computing environments such as R, Python or Excel, where more complex selection 

methods can be implemented. Once the user has determined a final set of best analyses and saved 

these to the text file recording this information, the third step can be run (or re-run) so that Fast Track 168 

will generate the final data files, log files, and images.  

 

2.4 Editing analyses and summarizing data  171 

Fast Track has several tools to help manipulate or summarize data3. In some cases, a winning 

analysis can still benefit from hand-editing, and thus it is particularly useful to be able to modify 

analyses efficiently. Fast Track takes advantage of Praat’s built-in functionalities to allow users to 174 

manually edit tracks quickly and easily by converting data into editable FormantGrid objects (see 

Figure 4), and then generating data files, images and Formant objects from the edited data. Fast 

Track keeps copies of both the edited and original Formant objects so that the unedited data can be 177 

recovered later.  

Although information about formant contours can be very useful, formant estimates every 2 

ms can be ‘too much’ information for some purposes. Fast Track has several functions to help 180 

summarize data across tokens. For example, the mean (or median) values of formant frequencies 

within equally-sized subsections of each vowel can be calculated and collected across tokens. Such 

data summaries can help produce vowel plots that present the same data in different ways, as in 183 

Figure 5, without ever requiring that the data be re-analyzed.  

 
3 For a current outline of available tools see the Fast Track wiki [link]. 
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 186 

Figure 4 - The top spectrogram presents an analysis with some noisy measurements towards the end of F3. On the 
right, the track has been converted to a FormantGrid object so that the points that deviate substantially from the 
predicted values can be deleted. The end result (bottom spectrogram) is a final analysis with more reliable F3 189 
values. 
 

 192 

 
Figure 5 - (a) All individual observations (n ≈ 150,000) of F1 and F2 across all tokens in the Hillenbrand et al. 
(1995) data for the re-analysis described in Section 3. (b) Average F1 and F2 values from midpoints (40-50% of 195 
vowel durations), for each token (n = 1668). (c) Average midpoint values for each vowel category, across all tokens. 
(d) Curves indicate F1 and F2 values for each vowel, averaged across every tenth of vowel duration, averaged 
across all speakers. Labels have been placed at midpoints.   198 
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3. Performance evaluation  

Performance will be evaluated by carrying out a re-analysis of the Hillenbrand et al (1995) dataset 

(henceforth H95, available here). The H95 data consists of a single repetition of 12 vowels (/i, ɪ, ʊ, u, 201 

e, o, ɛ, ʌ, ɔ, æ, ɑ, ɝ/) in an /hVd/ context by 139 speakers: 48 adult females, 45 adult males, 19 girls 

and 27 boys (all 10-12 years old). Vowel portions of the sound files were extracted using the 

beginning and end times reported by the authors. To investigate the relationship between maximum-204 

formant settings and analysis error for different speakers, a ‘gold-standard’ set of formant tracks is 

required to represent the ideal analysis in the opinion of the user. Selection of the gold-standard 

analysis was done by generating a set of analyses varying in maximum-formant, for each token. 207 

Twenty analyses were considered, with maximum-formant frequency varying between 4800 and 

7300 Hz, resulting in an analysis every 131 Hz (i.e., maximum formant = 4800, 4931, 5062, …, 7300 

Hz). Images comparing the 20 analyses were made for each sound in a similar fashion to Figure 1, 210 

and the best analysis (in the opinion of the author) was selected as the gold-standard.  

 

3.1 Maximum-formant settings for different speaker types 213 

It may be tempting to carry out an analysis with an overly broad maximum-formant range in order to 

ensure that the correct analysis is included in the set of candidates. However, as seen in Figure 6, 

maximum-formant settings that are very inappropriate for a given sound can result in analyses that 216 

are extremely inaccurate, and yet very difficult to distinguish from a good formant-track. In many 

cases, this is because the incorrect analysis resembles a production of a different phone by another 

type of speaker. For example, the formant pattern suggested by the analysis in Figure 6b could 219 

plausibly be a low back-vowel produced by an adult (it is reasonably similar to the true formant 

pattern in Figure 6c), and is smoother than the correct analysis in Figure 6a. Often in situations like 

these, the only way to select the correct analysis is to refer to information external to the token being 222 

analyzed (e.g., the formants in 6b are not plausible for an open vowel produced by a child).  

 

 225 
Figure 6 - (a) The gold-standard analysis of a production of ‘had’ by a girl (maximum formant = 6653 Hz). (b) The 
same sound as (a), but the maximum-formant is set much too low (4700 Hz). (c) The gold-standard analysis of a 
production of ‘who’d’ by an adult male (maximum formant = 5147 Hz). (d) The same sound as (c), but the 228 
maximum-formant is set much too high (6547 Hz). Filled points indicate predicted formant values, empty points (in 
lighter colors) indicate observed formant frequencies 
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To investigate the relationship between maximum-formant frequency settings and analysis 231 

error, the following calculation was carried out for each speaker. First, for each token, the mean 

absolute error (MAE) was found between the gold-standard values for each formant at each time 

point, and the corresponding values for the analysis at each maximum-formant frequency setting. 234 

Then, these values were averaged within-speaker (across vowels), resulting in a single value for each 

speaker for each maximum-formant setting (20 values per speaker). These MAEs answer the 

following question for a given speaker: How much error can we expect in our analysis for each 237 

maximum-formant setting? Plots showing variation in MAE as a function of maximum-formant 

frequency (Figure 7) can be used to understand which analysis ranges best suit different sorts of 

speakers. For example, in Figure 7d we see that there are large measurement errors for maximum-240 

formant settings below 5500 Hz for most girls in the H95 data, suggesting that maximum-formant 

frequencies below 5500 Hz should likely be avoided for these speakers. Although there are obvious 

general differences between speaker classes, there is also substantial variability within-class. This 243 

suggests that upper and lower bounds on maximum-formant frequencies should be set based on the 

characteristics of the particular speaker rather than solely due to belonging to a general class (e.g., 

‘woman’, see Figure 7f).  246 

 

 
 249 
Figure 7 - Bold lines indicates average for speaker class, dotted lines indicate average errors for individual 
speakers for (a) adult males, (b) adult females, (c) 10-12 year-old boys, (d) 10-12 year-old girls. (e) Curves 
comparing one speaker from each class, showing these can be quite similar across gross speaker classes. (f) Curves 252 
comparing four adult females show that within-class variation can be large.    

 

3.1 Expected analysis error under different selection conditions 255 

In addition to selecting the maximum-formant range for the analyses, the user has control over the 

selection of the winner from among the candidates. To investigate the reliability of analyses in 

different selection conditions, the following possibilities will be considered: 258 
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1. Twenty analyses from 4800 to 7300 Hz are considered. The smoothest track is selected 

as the winner (smoothness only).   261 

2. The same analyses from (1) are considered. In addition to smoothness, the following 

heuristics are used: Median F1 should be under 1200 Hz, and the median bandwidths of 

F1, F2 and F3 should be under 500, 600, and 900 Hz, respectively. Finally, if median 264 

F3 is under 2000 Hz, then the difference between median F2 and median F1 should be 

greater than 500 Hz. This final heuristic allows extremely low F3 values only when F1 

and F2 feature enough separation.   267 

3. Different maximum-formant ranges: Twenty analyses between 4800 and 6600 Hz are 

used for adult males, twenty analyses between 5500 Hz and 7300 Hz are used if the 

speaker is not an adult male. The smoothest track is selected as the winner. 270 

4. In addition to smoothness, the heuristics from (2) are combined with the different 

analysis ranges from (3).   

5. Fixed frequencies are used for tokens produced by all speakers in a given class based 273 

on the default Praat values: 5000 Hz for adult males and 5500 Hz for all other speakers.  

Rather than looking for an exact match, the number of cases where the automatic analysis is 

reasonably similar to the gold-standard will be measured. Similarity was quantified by calculating 276 

two statistics: 1) the mean absolute-error (MAE) between the gold standard and the automatically-

selected winner for each token, 2) the percent of tokens where the MAE is less than 5% of the value 

of the gold-standard formant frequencies (since measurement error tends to increase proportionally 279 

with formant frequency, Hillenbrand et al. 1995, Table II). Results are presented in Figure 8. 

 

 282 
Figure 8 - (a) Mean absolute error (MAE) between winners and gold-standards for different speaker classes (Men, 
Women, Boys, Girls), for different selection methods. Selection methods combined considerations of track 
smoothness (S), heuristics (H), and range differences (R) between adult male and non-adult male speakers. Note the 285 
y-axis has logarithmic spacing. (b) Percent of analyses where the MAE is less than 5% of the gold-standard values. 
(c) The same information as in (b), but with a smaller y-axis range.  

 288 

Overall, the combination of range restrictions and heuristics resulted in an average error of 

around 20 Hz, and 1650/1668 tokens having an error smaller than 5% of values. Simply providing 

appropriate ranges for speakers (method 3 above, S+R in Figure 8) resulted in a substantial 291 
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performance improvement over only considering formant smoothness (method 1, S in Figure 8), 

highlighting the importance of providing appropriate maximum-formant ranges for an analysis. The 

static analysis frequencies resulted in very poor performance, while combinations of the heuristics 294 

and range restrictions yielded very good results. It should be noted that performance could have been 

better, perhaps much better, with more appropriate static frequencies. The problem is it is difficult to 

know what these should be a priori, thus leading to the desire for automation in the analysis.  297 

 

4. Summary and conclusion 

The general design and use of Fast Track was outlined here. The modular design allows for the 300 

distribution of work in a laboratory, and the use of intermediate data files means that Fast Track can 

easily integrate with alternative analysis methods. Fast Track makes it simple to collect large 

amounts of data automatically (formant frequencies, formant bandwidths, f0, sound intensity, and 303 

harmonicity measured every 2 ms), and can be modified to include any other analysis carried out by 

Praat. Because it is implemented entirely in Praat, researchers need no special technical ability to use 

it, while those comfortable with Praat scripting can easily modify and extend its behavior.  306 
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